
VT1415A
Algorithmic Closed Loop
Controller

User’s Manual

APPLICABILITY

This manual edition is intended for use with the following instrument drivers:

· Downloaded driver revision A.01.02 or later for Agilent/HP Command Modules

· C-SCPI driver revision D.01.02 or later

Call your local VXI Technology Sales Office for information on other drivers.

bus

 P/N: 82-0074-000
 Rev. August 15, 2005

 Printed in U.S.A.

Copyright © VXI Technology, Inc. 2005

Cer tif i ca tion

VXI Tech nol ogy, Inc. cer ti fies that this prod uct met its pub lished spec i fi ca tions at the time of ship ment from the fac tory.
VXI Technology fur ther cer ti fies that its cal i bra tion mea sure ments are trace able to the United States Na tional In sti tute of Standards
and Tech nol ogy (for merly Na tional Bu reau of Stan dards), to the ex tent al lowed by that or ga ni za tion’s cal i bra tion fa cil ity and to the
cal i bra tion fa cil i ties of other In ter na tional Stan dards Or ga ni za tion mem bers.

War ranty

This VXI Tech nol ogy prod uct is war ranted against de fects in ma te ri als and work man ship for a pe riod of three years from date of
ship ment. Du ra tion and con di tions of war ranty for this prod uct may be su per seded when the prod uct is in te grated into (be comes a part
of) other VXI Technology products. Dur ing the war ranty pe riod, VXI Tech nol ogy will, at its op tion, ei ther re pair or re place prod ucts
which prove to be de fec tive.

For war ranty ser vice or re pair, this prod uct must be re turned to a ser vice fa cil ity des ig nated by VXI Tech nol ogy. Buyer shall pre pay
ship ping charges to VXI Tech nol ogy and VXI Tech nol ogy shall pay ship ping charges to re turn the prod uct to Buyer. How ever, Buyer
shall pay all ship ping charges, du ties and taxes for prod ucts re turned to VXI Tech nol ogy from an other coun try.

VXI Tech nol ogy war rants that its soft ware and firm ware des ig nated by VXI Tech nol ogy for use with a prod uct will ex e cute its
pro gram ming in struc tions when prop erly in stalled on that prod uct. VXI Tech nol ogy does not war rant that the op er a tion of the prod uct
or soft ware or firm ware will be un in ter rupted or er ror free.

Lim i ta tion Of War ranty
The fore go ing war ranty shall not ap ply to de fects re sult ing from im proper or in ad e quate main te nance by Buyer, Buyer-sup plied
prod ucts or in ter fac ing, un au tho rized mod i fi ca tion or mis use, op er a tion out side of the en vi ron men tal spec i fi ca tions for the prod uct or
im proper site preparation or maintenance.

The de sign and im ple men ta tion of any cir cuit on this prod uct is the sole re spon si bil ity of the Buyer. VXI Tech nol ogy does not war rant
the Buyer’s cir cuitry or mal func tions of VXI Tech nol ogy prod ucts that re sult from the Buyer’s cir cuitry. In ad di tion, VXI Tech nol ogy
does not war rant any dam age that oc curs as a re sult of the Buyer’s cir cuit or any de fects that re sult from Buyer-sup plied prod ucts.

NO OTHER WAR RANTY IS EX PRESSED OR IM PLIED. VXI TECH NOL OGY SPE CIF I CALLY DIS CLAIMS THE IM PLIED
WAR RAN TIES OF MER CHANT ABIL ITY AND FIT NESS FOR A PAR TIC U LAR PURPOSE.

Ex clu sive Rem e dies
THE REM E DIES PRO VIDED HEREIN ARE BUYER’S SOLE AND EX CLU SIVE REM E DIES. VXI TECH NOL OGY SHALL
NOT BE LI A BLE FOR ANY DI RECT, IN DI RECT, SPE CIAL, IN CI DEN TAL or CON SE QUEN TIAL DAM AGES, WHETHER
BASED ON CON TRACT, TORT, or ANY OTHER LEGAL THEORY.

No tice

The in for ma tion con tained in this doc u ment is sub ject to change with out no tice. VXI TECH NOL OGY MAKES NO WAR RANTY OF
ANY KIND WITH RE GARD TO THIS MA TE RIAL, IN CLUD ING, BUT NOT LIM ITED TO, THE IM PLIED WAR RAN TIES OF
MER CHANT ABIL ITY AND FIT NESS FOR A PAR TIC U LAR PUR POSE. VXI Tech nol ogy shall not be li a ble for er rors con tained
herein or for in ci den tal or con se quen tial dam ages in con nec tion with the fur nish ing, performance, or use of this ma te rial. This
doc u ment con tains pro pri etary in for ma tion which is pro tected by copy right. All rights are re served. No part of this doc u ment may be
pho to cop ied, reproduced, or trans lated to an other lan guage with out the prior writ ten con sent of VXI Tech nol ogy. VXI Tech nol ogy
as sumes no re spon si bil ity for the use or re li abil ity of its soft ware on equip ment that is not fur nished by VXI Tech nol ogy.

Re stricted Rights Leg end

U.S. Gov ern ment Re stricted Rights. The Soft ware and Doc u men ta tion have been de vel oped en tirely at pri vate ex pense. They are
de liv ered and li censed as “com mer cial com puter soft ware” as de fined in DFARS 252.227- 7013 (Oct 1988), DFARS 252.211-7015
(May 1991) or DFARS 252.227-7014 (Jun 1995), as a “com mer cial item” as de fined in FAR 2.101(a) or as “Re stricted com puter
soft ware” as de fined in FAR 52.227-19 (Jun 1987)(or any equiv a lent agency reg u la tion or con tract clause), which ever is ap pli ca ble.
You have only those rights pro vided for such Soft ware and Doc u men ta tion by the ap pli ca ble FAR or DFARS clause or the
VXI Tech nol ogy stan dard soft ware agree ment for the prod uct in volved.

 iii

iv

Frame or chas sis ground
ter mi nal—typ i cally con nects to the
equip ment’s metal frame.

Al ter nat ing cur rent (ac).

Di rect cur rent (dc).

In di cates haz ard ous volt ages.

Calls at ten tion to a pro ce dure, practice, or
con di tion that could cause bodily in jury or
death.

Calls at ten tion to a pro ce dure, practice, or
con di tion that could pos si bly cause dam age
to equip ment or per ma nent loss of data.

In di cates the field wir ing ter mi nal that
must be con nected to earth ground be fore
op er at ing the equip ment—pro tects against
elec tri cal shock in case of fault.

In struc tion man ual sym bol af fixed to
prod uct. In di cates that the user must re fer
to the man ual for spe cific WARN ING or
CAU TION in for ma tion to avoid per sonal
in jury or dam age to the product.

or

Warnings

The fol low ing gen eral safety pre cau tions must be ob served dur ing all phases of op er a tion, service, and re pair of this prod uct.
Fail ure to com ply with these pre cau tions or with spe cific warn ings else where in this man ual vi o lates safety stan dards of de sign,
manufacture, and in tended use of the prod uct. VXI Tech nol ogy as sumes no li a bil ity for the cus tomer’s fail ure to com ply with
these re quire ments.

Ground the equip ment: For Safety Class 1 equip ment (equip ment hav ing a pro tec tive earth ter mi nal), an uninterruptible safety earth
ground must be pro vided from the mains power source to the prod uct in put wir ing ter mi nals or sup plied power cable.

DO NOT op er ate the prod uct in an ex plo sive at mo sphere or in the pres ence of flam ma ble gases or fumes.

For con tin ued pro tec tion against fire, re place the line fuse(s) only with fuse(s) of the same volt age and cur rent rat ing and type.
DO NOT use re paired fuses or short-cir cuited fuse holders.

Keep away from live cir cuits: Operating per son nel must not re move equip ment cov ers or shields. Pro ce dures in volv ing the re moval
of cov ers or shields are for use by ser vice-trained per son nel only. Un der cer tain con di tions, dan ger ous volt ages may ex ist even with
the equip ment switched off. To avoid dan ger ous elec tri cal shock, DO NOT per form pro ce dures in volv ing cover or shield re moval
unless you are qualified to do so.

DO NOT op er ate dam aged equip ment: When ever it is pos si ble that the safety pro tec tion fea tures built into this prod uct have been
im paired, ei ther through phys i cal dam age, ex ces sive mois ture or any other rea son, RE MOVE POWER and do not use the prod uct un til
safe op er a tion can be ver i fied by ser vice-trained per son nel. If nec es sary, re turn the prod uct to a VXI Tech nol ogy Sales and Ser vice
Of fice for ser vice and re pair to en sure that safety fea tures are main tained.

DO NOT ser vice or ad just alone: Do not at tempt in ter nal ser vice or ad just ment un less an other per son, ca pa ble of ren der ing first aid
and re sus ci ta tion, is present.

DO NOT sub sti tute parts or mod ify equip ment: Be cause of the dan ger of in tro duc ing ad di tional haz ards, do not in stall sub sti tute
parts or per form any un au tho rized mod i fi ca tion to the prod uct. Re turn the prod uct to a VXI Tech nol ogy Sales and Ser vice Of fice for
ser vice and re pair to en sure that safety fea tures are main tained.

WARN ING

CAU TION

Safety Sym bols

Note for Eu ro pean Cus tom ers

If this symbol appears on your product, it indicates that it was manufactured after August 13, 2005. This mark is placed in accordance
with EN 50419, Marking of electrical and electronic equipment in accordance with Article 11(2) of directive 2002/96/EC (WEEE).
End-of-life product can be returned to VTI by obtaining an RMA number. Fees for recycling will apply if not prohibited by national law.
SCP cards for use with the VT1415A have this mark placed on their packaging due to the densely populated nature of these cards.

Table of Contents

Warranty . iii
Safety Symbols. iv
Note for European Customers . iv
Support Resources. xv

Chapter 1. Getting Started . 17

About This Chapter . 17
Configuring the VT1415A . 17

Setting the Logical Address Switch . 18
Installing SCPs . 19
Disabling the Input Protect Feature (Optional) 23
Disabling Flash Memory Access (Optional) . 23

Instrument Drivers. 25
About Example Programs . 25
Verifying a Successful Configuration . 25

Chapter 2. Field Wiring. 29

About This Chapter . 29
Planning the Wiring Layout . 29

SCP Positions and Channel Numbers . 29
Sense SCPs and Output SCPs . 31
Planning for Thermocouple Measurements. 32

Terminal Modules . 33
The SCPs and Terminal Module . 33
Terminal Module Layout. 33

Reference Temperature Sensing with the VT1415A. 35
Preferred Measurement Connections. 37
Connecting the On-Board Thermistor . 40
Wiring and Attaching the Terminal Module . 41
Attaching/Removing the VT1415A Terminal Module 43
Adding Components to the Terminal Module. 45
Terminal Module Wiring Maps. 46
Terminal Module Option. 47

Option A3F . 47
Faceplate Connector Pin-Signal Lists . 49

Chapter 3. Programming the VT1415A for PID Control 51

About This Chapter . 51
Overview of the VT1415A Algorithmic Loop Controller. 52

Operational Overview . 52
Programming Model . 53
Executing the Programming Model. 55

Power-On and *RST Default Settings. 55

Table of Contents v

Setting Up Analog Input and Output Channels. 58
Configuring Programmable Analog SCP Parameters 58
Linking Channels to EU Conversion. 60
Linking Output Channels to Functions . 67

Setting Up Digital Input and Output Channels . 68
Setting Up Digital Inputs. 68
Setting Up Digital Outputs . 69

Performing Channel Calibration (Important!) . 72
Defining Standard PID Algorithms . 73

The Pre-Defined PIDA Algorithm . 73
The Pre-Defined PIDB Algorithm. 74
Defining a PID with ALG:DEFINE . 76

Pre-Setting PID Variables and Coefficients . 77
Pre-Setting PID Variables . 77

Defining Data Storage . 77
Specifying the Data Format. 77
Selecting the FIFO Mode . 78

Setting up the Trigger System. 78
Arm and Trigger Sources . 78
Programming the Trigger Timer . 80
Setting the Trigger Counter. 81
Outputting Trigger Signals . 81

INITiating/Running Algorithms . 81
Starting the PID Algorithm . 81
The Operating Sequence . 82

Reading Running Algorithm Values . 83
Reading Algorithm Variables . 83
Reading Algorithm Values From the CVT . 83
Reading History Mode Values From the FIFO 84

Modifying Running Algorithm Variables . 87
Updating the Algorithm Variables and Coefficients 87
Enabling and Disabling Algorithms . 87
Setting Algorithm Execution Frequency. 88

Example Command Sequence. 88
A Quick-Start PID Algorithm Example . 89
PID Algorithm Tuning . 91
Using the Status System . 91

Enabling Events to be Reported in the Status Byte. 94
Reading the Status Byte . 96
Clearing the Enable Registers . 97
The Status Byte Group’s Enable Register . 97
Reading Status Groups Directly . 97

VT1415A Background Operation . 98
Updating the Status System and VXIbus Interrupts 98
Creating and Loading Custom EU Conversion Tables 99
Compensating for System Offsets . 102

Special Considerations . 104

vi Table of Contents

Detecting Open Transducers . 104
More On Auto Ranging. 106
Settling Characteristics . 106

Background . 106
Checking for Problems . 107
Fixing the Problem . 107

Chapter 4. Creating and Running Custom Algorithms 109

About This Chapter . 109
Describing the VT1415A Closed Loop Controller 110
What is a Custom Algorithm? . 110
Overview of the Algorithm Language. 110

Example Language Usage . 111
The Algorithm Execution Environment . 111

The Main Function . 112
How the Algorithms Fit In . 112

Accessing the VT1415A’s Resources . 113
Accessing I/O Channels . 114
Defining and Accessing Global Variables . 115
Determining First Execution (First_loop) . 115
Initializing Variables . 116
Sending Data to the CVT and FIFO . 116
Setting a VXIbus Interrupt . 117
Determining an Algorithm’s Identity (ALG_NUM). 117
Calling User Defined Functions . 118

Operating Sequence. 118
Overall Sequence. 119
Algorithm Execution Order. 119

Defining Custom Algorithms (ALG:DEF) . 121
ALG:DEFINE in the Programming Sequence 121
ALG:DEFINE’s Three Data Formats . 121
Changing a Running Algorithm . 122

A Very Simple First Algorithm. 124
Writing the Algorithm. 125
Running the Algorithm . 125

Modifying a Standard PID Algorithm. 125
PIDA with Digital On-Off Control . 125

Algorithm to Algorithm Communication . 126
Communication Using Channel Identifiers . 126
Communication Using Global Variables. 127

Non-Control Algorithms . 129
Data Acquisition Algorithm . 129
Process Monitoring Algorithm . 129

Implementing Setpoint Profiles. 130

Table of Contents vii

Chapter 5. Algorithm Language Reference . 133

Language Reference . 133
Standard Reserved Keywords . 134
Special VT1415A Reserved Keywords. 134
Identifiers . 134
Special Identifiers for Channels . 135
Operators . 135
Intrinsic Functions and Statements . 135
Program Flow Control. 136
Data Types. 136
Data Structures . 137
Bitfield Access . 138

Language Syntax Summary. 139
Program Structure and Syntax. 143

Declaring Variables. 143
Assigning Values. 143
The Operations Symbols . 144
Conditional Execution. 144
Comment Lines . 146
Overall Program Structure. 146
Where To Go Next . 147

Chapter 6. VT1415A Command Reference . 149

ABORt. 160
ALGorithm . 161

ALGorithm[:EXPLicit]:ARRay . 162
ALGorithm[:EXPLicit]:ARRay? . 163
ALGorithm[:EXPLicit]:DEFine . 163
ALGorithm[:EXPLicit]:SCALar . 167
ALGorithm[:EXPLicit]:SCALar? . 168
ALGorithm[:EXPLicit]:SCAN:RATio . 168
ALGorithm[:EXPLicit]:SCAN:RATio? . 169
ALGorithm[:EXPLicit]:SIZe? . 169
ALGorithm[:EXPLicit][:STATe] . 170
ALGorithm[:EXPLicit][:STATe]? . 171
ALGorithm[:EXPLicit]:TIMe? . 171
ALGorithm:FUNCtion:DEFine . 172
ALGorithm:OUTPut:DELay . 173
ALGorithm:OUTPut:DELay? . 174
ALGorithm:UPDate[:IMMediate] . 174
ALGorithm:UPDate:CHANnel . 175
ALGorithm:UPDate:WINDow . 176
ALGOrithm:UPDate:WINDow? . 177

ARM . 178
ARM[:IMMediate] . 179
ARM:SOURce . 179
ARM:SOURce?. 180

viii Table of Contents

CALibration. 181
CALibration:CONFigure:RESistance . 182
CALibration:CONFigure:VOLTage . 183
CALibration:SETup . 184
CALibration:SETup? . 184
CALibration:STORe . 185
CALibration:TARE . 186
CALibration:TARE:RESet . 187
CALibration:TARE? . 188
CALibration:VALue:RESistance . 188
CALibration:VALue:VOLTage . 189
CALibration:ZERO? . 190

DIAGnostic . 191
DIAGnostic:CALibration:SETup[:MODE] 191
DIAGnostic:CALibration:SETup[:MODE]? 192
DIAGnostic:CALibration:TARE[:OTDetect]:MODE 192
DIAGnostic:CALibration:TARE[:OTDetect]:MODE? 193
DIAGnostic:CHECksum? . 193
DIAGnostic:CUSTom:LINear . 193
DIAGnostic:CUSTom:PIECewise . 194
DIAGnostic:CUSTom:REFerence:TEMPerature 195
DIAGnostic:IEEE . 195
DIAGnostic:IEEE? . 196
DIAGnostic:INTerrupt[:LINe] . 196
DIAGnostic:INTerrupt[:LINe]? . 196

FORMat. 199
FORMat[:DATA] . 199
FORMat[:DATA]? . 201

INITiate . 202
INITiate[:IMMediate] . 202

INPut . 203
INPut:FILTer[:LPASs]:FREQuency. 203
INPut:FILTer[:LPASs]:FREQuency? . 204
INPut:FILTer[:LPASs][:STATe] . 204
INPut:FILTer[:LPASs][:STATe]?. 205
INPut:GAIN . 205
INPut:GAIN? . 206
INPut:LOW . 206
INPut:LOW? . 207
INPut:POLarity . 207
INPut:POLarity? . 208

MEMory . 209
MEMory:VME:ADDRess. 210
MEMory:VME:ADDRess? . 210
MEMory:VME:SIZE . 210
MEMory:VME:SIZE?. 211
MEMory:VME:STATe . 211
MEMory:VME:STATe? . 212

Table of Contents ix

OUTPut . 213
OUTPut:CURRent:AMPLitude . 213
OUTPut:CURRent:AMPLitude?. 214
OUTPut:CURRent[:STATe] . 215
OUTPut:CURRent[:STATe]? . 215
OUTPut:POLarity . 216
OUTPut:POLarity? . 216
OUTPut:SHUNt . 216
OUTPut:SHUNt? . 217
OUTPut:TTLTrg:SOURce . 217
OUTPut:TTLTrg:SOURce? . 218
OUTPut:TTLTrg<n>[:STATe] . 218
OUTPut:TTLTrg<n>[:STATe]? . 219
OUTPut:TYPE . 219
OUTPut:TYPE? . 220
OUTPut:VOLTage:AMPLitude . 220
OUTPut:VOLTage:AMPLitude? . 221

ROUTe . 222
ROUTe:SEQuence:DEFine? . 222
ROUTe:SEQuence:POINts? . 223

SAMPle . 224
SAMPle:TIMer . 224
SAMPle:TIMer? . 225

[SENSe]. 226
[SENSe:]CHANnel:SETTling. 227
[SENSe:]CHANnel:SETTling?. 227
[SENSe:]DATA:CVTable? . 228
[SENSe:]DATA:CVTable:RESet . 229
[SENSe:]DATA:FIFO[:ALL]? . 229
[SENSe:]DATA:FIFO:COUNt? . 230
[SENSe:]DATA:FIFO:COUNt:HALF? . 231
[SENSe:]DATA:FIFO:HALF? . 231
[SENSe:]DATA:FIFO:MODE . 232
[SENSe:]DATA:FIFO:MODE? . 233
[SENSe:]DATA:FIFO:PART? . 233
[SENSe:]DATA:FIFO:RESet . 234
[SENSe:]FREQuency:APERture . 234
[SENSe:]FREQuency:APERture?. 234
[SENSe:]FUNCtion:CONDition . 235
[SENSe:]FUNCtion:CUSTom . 235
[SENSe:]FUNCtion:CUSTom:REFerence . 236
[SENSe:]FUNCtion:CUSTom:TCouple . 237
[SENSe:]FUNCtion:FREQuency . 238
[SENSe:]FUNCtion:RESistance . 239
[SENSe:]FUNCtion:STRain: . 240
[SENSe:]FUNCtion:TEMPerature . 241
[SENSe:]FUNCtion:TOTalize . 243
[SENSe:]FUNCtion:VOLTage[:DC] . 243

x Table of Contents

[SENSe:]REFerence . 244
[SENSe:]REFerence:CHANnels . 246
[SENSe:]REFerence:TEMPerature . 246
[SENSe:]STRain:EXCitation . 247
[SENSe:]STRain:EXCitation? . 247
[SENSe:]STRain:GFACtor . 248
[SENSe:]STRain:GFACtor? . 248
[SENSe:]STRain:POISson . 249
[SENSe:]STRain:POISson? . 249
[SENSe:]STRain:UNSTrained . 249
[SENSe:]STRain:UNSTrained? . 250
[SENSe:]TOTalize:RESet:MODE . 250
[SENSe:]TOTalize:RESet:MODE? . 252

SOURce. 253
SOURce:FM[:STATe] . 253
SOURce:FM:STATe? . 254
SOURce:FUNCtion[:SHAPe]:CONDition . 254
SOURce:FUNCtion[:SHAPe]:PULSe. 254
SOURce:FUNCtion[:SHAPe]:SQUare . 255
SOURce:PULM[:STATe] . 255
SOURce:PULM:STATe? . 255
SOURce:PULSe:PERiod. 256
SOURce:PULSe:PERiod?. 256
SOURce:PULSe:WIDTh. 257
SOURce:PULSe:WIDTh?. 257

STATus . 258
STATus:OPERation:CONDition?. 260
STATus:OPERation:ENABle . 261
STATus:OPERation:ENABle? . 261
STATus:OPERation[:EVENt]?. 262
STATus:OPERation:NTRansition . 262
STATus:OPERation:NTRansition?. 263
STATus:OPERation:PTRansition . 263
STATus:OPERation:PTRansition? . 264
STATus:PRESet . 264
STATus:QUEStionable:CONDition? . 265
STATus:QUEStionable:ENABle . 265
STATus:QUEStionable:ENABle? . 266
STATus:QUEStionable[:EVENt]? . 266
STATus:QUEStionable:NTRansition . 267
STATus:QUEStionable:NTRansition? . 267
STATus:QUEStionable:PTRansition . 268
STATus:QUEStionable:PTRansition? . 268

SYSTem . 269
SYSTem:CTYPe? . 269
SYSTem:ERRor? . 269
SYSTem:VERSion? . 270

Table of Contents xi

TRIGger. 271
TRIGger:COUNt . 273
TRIGger:COUNt? . 273
TRIGger[:IMMediate] . 273
TRIGger:SOURce . 274
TRIGger:SOURce? . 275
TRIGger:TIMer[:PERiod] . 275
TRIGger:TIMer[:PERiod]? . 275

Common Command Reference . 276
*CAL? . 276
*CLS . 277
*DMC <name>,<cmd_data> . 277
*EMC . 277
*EMC? . 277
*ESE <mask> . 277
*ESE? . 278
*ESR? . 278
*GMC? <name> . 278
*IDN? . 278
*LMC? . 279
*OPC . 279
*OPC? . 279
*PMC . 279
*RMC <name> . 279
*RST . 280
*SRE <mask>. 281
*SRE? . 281
*STB? . 281
*TRG. 281
*TST? . 281
*WAI. 285

 Command Quick Reference . 286

APPENDIX A. Specifications . 295

APPENDIX B. Error Messages. 325

APPENDIX C. Glossary . 333

APPENDIX D. PID Algorithm Listings . 337

PIDA . 337
PIDB . 339
PIDC . 344

APPENDIX E. Wiring and Noise Reduction Methods 351

Separating Digital and Analog SCP Signals . 351
Recommended Wiring and Noise Reduction Techniques 352

Wiring Checklist . 352

xii Table of Contents

VT1415A Guard Connections. 353
Common Mode Voltage Limits. 353
When to Make Shield Connections . 353

Noise Due to Inadequate Card Grounding . 353
VT1415A Noise Rejection . 354

Normal Mode Noise (Enm) . 354
Common Mode Noise (Ecm). 354
Keeping Common Mode Noise out of the Amplifier 354
Reducing Common Mode Rejection Using Tri-Filar Transformers . 355

APPENDIX F. Generating User Defined Functions 357

Introduction . 357
Haversine Example . 358
Limitations. 360
Program Listings . 361

APPENDIX G. Example Program Listings . 377

simp_pid.cs . 377
file_alg.cs . 383
swap.cs . 389
tri_sine.cs. 396

Index . 409

Table of Contents xiii

xiv Table of Contents

Support Resources

Support resources for this product are available on the Internet and at VXI Technology
customer support centers.

VXI Technology
World Headquarters

VXI Technology, Inc.
2031 Main Street
Irvine, CA 92614-6509

Phone: (949) 955-1894
Fax: (949) 955-3041

VXI Technology
Cleveland Instrument Division

VXI Technology, Inc.
7525 Granger Road, Unit 7
Valley View, OH 44125

Phone: (216) 447-8950
Fax: (216) 447-8951

VXI Technology
Lake Stevens Instrument Division

VXI Technology, Inc.
1924 - 203 Bickford
Snohomish, WA 98290

Phone: (425) 212-2285
Fax: (425) 212-2289

Technical Support

Phone: (949) 955-1894
Fax: (949) 955-3041
E-mail: support@vxitech.com

Visit http://www.vxitech.com for worldwide support sites and service plan information.

Support xv

mailto:support@vxitech.com
http://www.vxitech.com

Support xvi

Chapter 1

Getting Started

About This Chapter

This chapter will explain hardware configuration before installation in a
VXIbus mainframe. By attending to each of these configuration items, the
VT1415A won’t have to be removed from its mainframe later. Chapter
contents include:

· Configuring the VT1415A . page 17

· Instrument Drivers . page 25

· About Example Programs . page 25

· Verifying a Successful Configuration . page 25

Configuring the VT1415A

There are several aspects to configuring the module before installing it in a
VXIbus mainframe. They are:

· Setting the Logical Address Switch . page 18

· Installing Signal Conditioning Plug-Ons page 18

· Disabling the Input Protect Feature . page 23

· Disabling Flash Memory Access . page 23

For most applications, only the Logical Address switch needs to be
changed prior to installation. The other settings can be used as delivered.

Switch/Jumper Setting

Logical Address Switch 208

Input Protect Jumper Protected

Flash Memory Protect Jumper PROG

NOTE Setting the VXIbus Interrupt Level: The VT1415A uses a default VXIbus
interrupt level of 1. The default setting is made at power-on and after *RST
com mand. The in ter rupt level can be changed by ex e cut ing the
DI AG nos tic:IN Ter rupt[:LINe] com mand in the application pro gram.

Chapter 1 Getting Started 17

Setting the Logical
Address Switch

Follow the next figure and ignore any switch numbering printed on the
Logical Address switch. When installing more than one VT1415A in a
single VXIbus Mainframe, set each instrument to a different Logical
Address.

18 Getting Started Chapter 1

Setting Logical Address Switch VT1415A

Set Switch As Shown

LOGICAL ADDRESS = 208

OPEN = SWITCH SET TO 0 (OFF)
CLOSED = SWITCH SET TO 1 (ON)

Installing SCPs The following illustrations show the steps used to install Signal
Conditioning Plug-on Modules (SCPs). Before installing the SCPs, read
“Separating Digital and Analog SCP Signals” in Appendix E.

CAUTION Use approved Static Discharge Safe handling procedures anytime the covers
are removed from the VT1415A or are handling SCPs.

Chapter 1 Getting Started 19

Remove 2 screws (#10 Torx);
lift front and slide out tabs

1

2

Remove the SCP
Retaining Screws

Installing SCPs: Removing the Cover – VT1415A1

20 Getting Started Chapter 1

Align the SCP
Connectors with the
Module Connectors

and then Push in

2

1
Tighten the SCP
Retaining Screws

SCP

CAUTION
Use approved Static
Discharge handling

procedures when handling
the VT1415A Scanning

A/D Module and the SCPs.

Installing SCPs – VT1415A2

Chapter 1 Getting Started 21

Tighten
2 Screws

Line up the 3 Tabs
with the 3 Slots;
then lower cover
onto the Module

Installing SCPs: Reinstalling the Cover – VT1415A3

2

1

22 Getting Started Chapter 1

Peel off correct
Label from Card and

Stick on the
appropriate place on

the Cover

Installing SCPs: Labeling – VT1415A4

1

2

Peel off Label from
Card and Stick on

the Terminal
Module to be

Connected to the
A/D Module

Stick-on Label furnished with the SCP
(VXI Technology part number: VT15xx)

Terminal Module
(Connect to A/D
Module Later)

Disabling the Input
Protect Feature

(Optional)

Disabling the Input Protect feature voids the VT1415A’s warranty. The
Input Protect feature allows the VT1415A to open all channel input relays if
any input’s voltage exceeds ±19 volts (±6 volts for digital I/O SCPs). This
feature will help to protect the card’s Signal Conditioning Plug-ons, input
multiplexer, ranging amplifier, and A/D from destructive voltage levels. The
level that trips the protection function has been set to provide a high
probability of protection. The voltage level that is certain to cause damage is
somewhat higher. If, in an application, the importance of completing a
measurement run outweighs the added risk of damage to the VT1415A,
the input protect feature may be disabled.

VOIDS WARRANTY Disabling the Input Protection Feature voids the VT1415A’s warranty.

To disable the Input Protection feature, locate and cut JM2202. Make a
single cut in the jumper and bend the adjacent ends apart. See following
illustration for location of JM2202.

Disabling Flash
Memory Access

(Optional)

The Flash Memory Protect Jumper (JM2201) is shipped in the “PROG”
position. It is recommended that the jumper be left in this position so that all
of the calibration commands can function. Changing the jumper to the
protect position prevents the following from being executed:

· The SCPI calibration command CAL:STORE ADC | TARE

· The register-based calibration commands STORECAL and STORETAR

· Any application that installs firmware-updates or makes any other
modification to Flash Memory through the A24 window.

With the jumper in the “PROG” position, one or more VT1415As can be
completely calibrated without removing them from the application system.
A VT1415A calibrated in its working environment will in general be better
calibrated than if it were calibrated separate from its application system.

The multimeter used during the periodic calibration cycle should be
considered the calibration transfer standard. Provide Calibration
Organization control unauthorized access to its calibration constants. See
the VT1415A/VT1419A Service Manual for complete information on
VT1415A periodic calibration.

If access to the VT1415A’s calibration constants must be limited, place
JM2201 in the protected position and cover the shield retaining screws with
calibration stickers. See following illustration for location of JM2201.

Chapter 1 Getting Started 23

24 Getting Started Chapter 1

Accessing and Locating JM2201 and JM2202 – VT1415A

JM2201

1 Locate

2 Cut

Input Protect Jumper
Warning: Cutting this Jumper

Voids Your Warranty!

Flash Memory Protect Jumper
Default = PROG
(recommended)

JM2202

3 Bend

Instrument Drivers

If using the VT1415A with C-SCPI (compiled-SCPI), the driver needed is
supplied as an option to the C-SCPI product. Follow the C-SCPI
documentation for use.

The Agilent/HP E1405B/06A downloadable driver is supplied with the
VT1415A. See the manual for the Agilent/HP Command Module/
Mainframe for down-loading procedures.

About Example Programs

Examples on Disc All example programs mentioned by file name in this manual are available
on the “VXIplug&play Drivers & Product Manuals” CD supplied with the
VT1415A.

Example Command
Sequences

Where programming concepts are discussed in this manual, the commands
to send to the VT1415A are shown in the form of command sequences.
These are not example programs because they are not written in any
computer language. They are meant to show the VT1415A SCPI commands
in the sequence they should be sent. Where necessary these sequences
include comments to describe program flow and control such as loop - end
loop and if - end if. See the code sequence on page 86 for an example.

Typical C-SCPI
Example Program

The Verify program (file name verif.cs) is printed below to show a typical
C-SCPI program for the VT1415A.

Verifying a Successful Configuration

An example C-SCPI program source is shown on the following pages. This
program is included with the VXIplug&play Drivers and Product Manuals
CD (file name verif.cs). The program uses the *IDN? query command to
verify the VT1415A is operational and responding to commands. The
program also has an error checking function (check_error()). It is important
to include an instrument error checking routine in programs, particularly the
first trial programs so that instant feedback can be provided while learning
about the VT1415A. After the C-SCPI preprocessor is run and the program
is compiled and loaded, type verif to run the example.

Chapter 1 Getting Started 25

/* verif.cs
1.) Prints the Module’s identification, manufacturer,

and revision number

2.) Prints the Signal Conditioning Plug-ons (SCPs) identification
(if any) at each of the SCP positions.

*/

#include <stdio.h>
#include <cscpi.h>

/* Defines module’s logical address */
#define LADD “208"

/* Declares module as a register device */
INST_DECL(e1415, “E1415A”, REGISTER);

/* Prototypes of functions declared later */

void rst_clr(void);
void id_scps(void);
int32 check_error(char *);

/**/
void main() /* Main function */
{

char read_id[80];

/* Clear screen and announce program */
printf(“\033H\033J\n\n Installation Verification

Program\n\n”);
printf(“\n\n Please Wait...”);

/* Start the register-based operating system for the module */
INST_STARTUP();

/* Enable communications to the module; check if successful */
INST_OPEN(e1415, “vxi,” LADD);
if (!e1415)
{

printf(“INST_OPEN failed (ladd = %s).Failure code is: %d\n”,
LADD,cscpi_open_error);

exit(1);
}

/* Read and print the module’s identification */
INST_QUERY(e1415, “*idn?”, “”, read_id);
printf(“\n\nInstrument ID: %s\n\n”, read_id);

rst_clr(); /* Function resets the module */

id_scps(); /* Function checks for installed SCPs */

exit(0);
}
/**/
void rst_clr() /* Reset the A/D module to its power-on state */

26 Getting Started Chapter 1

{
int16 opc_wait;

/* Reset the module and wait until it resets */
INST_QUERY(e1415, “*RST;*OPC?”, “”, &opc_wait);

/* Check for module generated errors; exit if errors read */
if (check_error(“rst_clr”))

exit(1);
}
/***/
void id_scps() /* Check ID of all installed SCPs */
{

int16 scp_addr;
char scp_id[100];

/* Get SCP identifications of all SCPs */
printf(“\nSCP Identifications:\n\n”);
for (scp_addr = 100; scp_addr <= 156; scp_addr += 8)
{

INST_QUERY(e1415, “SYST:CTYP? (@%d)”, “%s”, scp_addr, scp_id);
printf(“ID for SCP %d is %s\n”, (scp_addr - 100) / 8, scp_id);

}
}
/**/
int32 check_error(char *message) /* Check for module generated errors */
{

int16 error;
char err_out[256];

 /* Check for any errors */
INST_QUERY(e1415, “SYST:ERR?”, “”, &error, err_out);

/* If error is found, print out the error(s) */
if (error)
{

while(error)
{

printf(“Error %d,%s (in function %s)\n”, error, err_out,
message);

INST_QUERY(e1415, “SYST:ERR?”, “”, &error, err_out);
}
return 1;

}
return 0;

}

Chapter 1 Getting Started 27

Notes

28 Getting Started Chapter 1

Chapter 2

Field Wiring

About This Chapter

This chapter shows how to plan and connect field wiring to the VT1415A’s
Terminal Module. The chapter explains proper connection of analog signals
to the VT1415A, both two-wire voltage type and four-wire resistance type
measurements. Connections for other measurement types (e.g., strain using
the Bridge Completion SCPs) refer to specific SCP manual in the “SCP
Manuals” section. Chapter contents include:

· Planning Wiring Layout for the VT1415A page 29

· Terminal Module. page 33

· Reference Temperature Sensing with the VT1415A page 35

· Preferred Measurement Connections . page 38

· Connecting the On-Board Thermistor. page 40

· Wiring and Attaching the Terminal Module page 41

· Attaching/Removing the VT1415A Terminal Module page 43

· Adding Components to the Terminal Module page 45

· Terminal Module Wiring Maps . page 46

· Terminal Module Options . page 47

· Faceplate Connector Pin-Signal List. page 49

Planning the Wiring Layout

The first point to understand is that the VT1415A makes no assumptions
about the relationship between Signal Conditioning Plug-on (SCP) function
and the position in the VT1415A that it can occupy. Any type of SCP can
be placed into any SCP position. There are, however, some factors that
should be considered when planning what mix of SCPs should be installed
in each of the VT1415As. The following discussion is intended to clarify
these factors.

SCP Positions and
Channel Numbers

The VT1415A has a fixed relationship between Signal Conditioning
Plug-on positions and the channels they connect to. Each of the eight SCP
positions can connect to eight channels. Figure 2-1 shows the channel
number to SCP relationship.

Chapter 2 Field Wiring 29

30 Field Wiring Chapter 2

A/D System

SCP
0

SCP
1

SCP
2

SCP
3

SCP
4

SCP
5

SCP
6

SCP
7

Ch 00

Ch 07

Ch 08

Ch 15

Ch 16

Ch 23

Ch 24

Ch 31

Ch 32

Ch 39

Ch 40

Ch 47

Ch 48

Ch 55

Ch 56

Ch 63

Note
Each channel line
represents both a
Hi and Lo input.

Figure 2-1: Channel Numbers at SCP Positions

Sense SCPs and
Output SCPs

Some SCPs provide input signal conditioning (sense SCPs such as filters
and amplifiers) while others provide stimulus to the measurement circuit
(output SCPs such as current sources and strain bridge completion). In
general, channels at output SCP positions are not used for external signal
sensing but are paired with channels of a sense SCP. Two points to
remember about mixing output and sense SCPs:

1. Paired SCPs (an output and a sense SCP) may reside in separate
VT1415As. SCP outputs are adjusted by *CAL? to be within a
specific limit. The Engineering Unit (EU) conversion used for a sense
channel will assume the calibrated value for the output channel.

2. Output SCPs while providing stimulus to the measurement circuit
reduce the number of external sense channels available to the
VT1415A.

Figure 2-2 illustrates an example of “pairing” output SCP channels with
sense SCP channels (in this example, four-wire resistance measurements).

Chapter 2 Field Wiring 31

SCP
3

(sense)

SCP
4

(output)

Ch 24

Ch 31
Ch 32

Ch 39

Terminal Module

sense Hi

sense Lo
Note

Each channel line
represents both a
Hi and Lo input.

Figure 2-2: Pairing Output and Sense SCP Channels

Planning for
Thermocouple
Measurements

Thermocouples and thermocouple reference temperature sensors can be
wired to any of the VT1415A’s channels. When the scan list is executed,
make sure that the reference temperature sensor is specified in the channel
sequence before any of the associated thermocouple channels.

External wiring and connections to the VT1415A are made using the
Terminal Module (see page 41).

NOTE The isothermal reference temperature measurement made by a VT1415A
applies only to thermocouple measurements made by that instrument. In
systems with multiple VT1415As, each instrument must make its own
reference measurements. The reference measurement made by one
VT1415A can not be used to compensate thermocouple measurements made
by another VT1415A.

IMPORTANT! To make good low-noise measurements, shielded wiring must be used from
the device under test to the Terminal Module at the VT1415A. The shield
must be continuous through any wiring panels or isothermal reference
connector blocks and must be grounded at a single point to prevent ground
loops. See “Preferred Measurement Connections” later in this section and
“Wiring and Noise Reduction Methods” in Appendix E.

32 Field Wiring Chapter 2

Terminal Modules

The VT1415A is comprised of an A/D module and a spring clamp type
Terminal Module. The terminals utilize a spring clamp terminal for
connecting solid or stranded wire. Connection is made with a simple push
of a three-pronged insertion tool (P/N: 8710-2127), which is shipped with
the VT1415A. If the spring clamp terminal module is not desired, an
interface to a rack mount terminal panel (Option A3F) is available (see
page 47).

The Terminal Module provides the following:

· Terminal connections to field wiring.

· Strain relief for the wiring bundle.

· Reference junction temperature sensing for thermocouple
measurements.

· Ground-to-Guard connections for each channel.

The SCPs and
Terminal Module

The same Terminal is used for all field wiring regardless of which Signal
Conditioning Plug-On (SCP) is used. Each SCP includes a set of labels to
map that SCP’s channels to the Terminal Module’s terminal blocks. See
step 4 in “Installing Signal Conditioning Plug-Ons” in Chapter 1 page 22
for VT1415A Terminal Modules.

Terminal Module
Layout

Figure 2-3 shows a Terminal Module for the VT1415A.

Chapter 2 Field Wiring 33

34 Field Wiring Chapter 2

Terminal Block with
Remote Temperature Sensing,
Trigger, and other ConnectionsOn-board Thermistor

for Temperature Sensing

Jumper to select for
On-board or Remote

Temperature Sensing

Terminal Block for
Input Connections

Sockets for Guard to
Ground Connections

Figure 2-3: VT1415A Terminal Module

Reference Temperature Sensing with the VT1415A

The Terminal Module provides an on-board thermistor for sensing
isothermal reference temperature of the terminal blocks. Also provided is a
jumper set (J1 in Figure 2-3) to route the VT1415A’s on-board current
source to a thermistor or RTD on a remote isothermal reference block.
Figures 2-5 and 2-4 show connections for both local and remote sensing.

Chapter 2 Field Wiring 35

On-Board
Current Source

VT1415A Terminal Module Field Wiring

REM
ON

BOARD

J1

HTI

LTI

HTS

LTS

Hnn

Lnn

Any Sense
Channel

Figure 2-4: On-Board Thermistor Connections

On-Board
Current Source

VT1415A Terminal Module Field Wiring

REM
ON

BOARD

J1

HTI

LTI

HTS

LTS

Hnn

Lnn

Any Sense
Channel

Figure 2-5: Remote Thermistor or RTD Connections

Terminal Module
Considerations for TC

Measurements

The isothermal characteristics of the VT1415A Terminal Module are crucial
for good TC readings and can be affected by any of the following factors:

1. The clear plastic cover must be on the Terminal Module.
2. The thin white mylar thermal barrier must be inserted over the

Terminal Module connector (VT1415A only). This prevents airflow
from the VT1415A A/D Module into the Terminal Module.

3. The Terminal Module must also be in a fairly stable temperature
environment and it is best to minimize the temperature gradient
between the VT1415A module and the Terminal Module.

4. The VXI mainframe cooling fan filters must be clean and there
should be as much clear space in front of the fan intakes as possible.

5. Recirculating warm air inside a closed rack cabinet can cause a
problem if the Terminal Module is suspended into ambient air that is
significantly warmer or cooler. If the mainframe recess is mounted in
a rack with both front and rear doors, closing both doors helps keep
the entire VT1415A at a uniform temperature. If there is no front
door, try opening the back door.

6. VXI Technology recommends that the cooling fan switch on the back
of the of an Agilent/HP E1401 Mainframe be in the “High” position.
The normal variable speed cooling fan control can make the internal
VT1415A module temperature cycle up and down, which affects the
amplifiers with these microvolt-level signals.

36 Field Wiring Chapter 2

Preferred Measurement Connections

For any A/D Module to scan channels at high speeds, it must use a very
short sample period (< 10 µs for the VT1415A). If significant normal mode
noise is presented to its inputs, that noise will be part of the measurement.
To make quiet, accurate measurements in electrically noisy environments,
use properly connected shielded wiring between the A/D and the device
under test. Figure 2-6 shows recommended connections for powered
transducers, thermocouples, and resistance transducers. (See Appendix E for
more information on Wiring Techniques).

HINTS 1. Try to install Analog SCPs relative to Digital I/O as shown in
“Separating Digital and Analog Signals” in Appendix E.

2. Use individually shielded, twisted-pair wiring for each channel.
3. Connect the shield of each wiring pair to the corresponding Guard

(G) terminal on the Terminal Module (see Figure 2-7 for schematic
of Guard-to-Ground circuitry on the Terminal Module).

4. The Terminal Module is shipped with the Ground-to-Guard
(GND-GRD) shorting jumper installed for each channel. These may
be left installed or removed (see Figure 2-8 to remove the jumper),
dependent on the following conditions:

a.Grounded Transducer with shield connected to ground at
the transducer: Low frequency ground loops (dc and/or
50/60 Hz) can result if the shield is also grounded at the
Terminal Module end. To prevent this, remove the GND-GRD
jumper for that channel (Figure 2-6 A/C).

b.Floating Transducer with shield connected to the transducer
at the source: In this case, the best performance will most likely
be achieved by leaving the GND-GRD jumper in place
(Figure 2-6 B/D).

5. In general, the GND-GRD jumper can be left in place unless it is
necessary to remove to break low frequency (below 1 kHz) ground
loops.

6. Use good quality foil or braided shield signal cable.
7. Route signal leads as far as possible from the sources of greatest

noise.
8. In general, don’t connect Hi or Lo to Guard or Ground at the VT1415A.
9. It is best if there is a dc path somewhere in the system from Hi or Lo

to Guard/Ground.
10. The impedance from Hi to Guard/Ground should be the same as from

Lo to Guard/Ground (balanced).
11. Since each system is different, don’t be afraid to experiment using

the suggestions presented here until an acceptable noise level is
found.

Chapter 2 Field Wiring 37

IMPORTANT!

38 Field Wiring Chapter 2

Example for
Resistive
Transducers

Hi

Lo

Guard

Current Hi (-)

Current Lo (+)

Guard

Lo

Hi

Lo

Hi

Guard

Lo

Hi

Example for
Thermocouples

Example for
Powered
Transducers

Lo

Hi

Shield

Shield

Shield

Shield

 power

 power

 power

 power

P
to
V

P
to
V

pressure

pressure

A

B

C

D

E

Shield
Device

Under Test

Device
Under Test

Device
Under Test

Device
Under Test

Guard
Remove Jumper to
break Ground Loop
(shield connected to
ground at transducer)

Leave Jumper
in Place
(transducer floating)

Remove Jumper to
break Ground Loop
(shield connected to
ground at transducer)

Guard

Leave Jumper
in Place
(transducer floating)

Jumper may be left in
place, since Current Lo(+)
is at VT1415A GND Potential

Figure 2-6: Preferred Signal Connections

Chapter 2 Field Wiring 39

1 kW

GND to GRD Jumper
(removable)

1 kW

0.1 µF GND to GRD Jumper
(removable)

G0

G7

For each
SCP Position

External Connections
SCP

10 kW

10 kW

Terminal Module

0.1 µF

Figure 2-7: GRD/GND Circuitry on Terminal Module

Removing Guard to
Ground on Channel 00

Figure 2-8: Grounding the Guard Terminal

Connecting the On-Board Thermistor

The following figures show how to use the A/D module to make
temperature measurements with or without using the on-board Thermistor.
The Thermistor is used for reference junction temperature sensing in
thermocouple measurements. Figure 2-9 shows the configuration for the
VT1415A Terminal Module.

40 Field Wiring Chapter 2

Under Cover

 ON BOARD
Place both J1 jumpers here to
connect current source to
on-board thermistor RT1. Sense
RT1 by connecting any sense
channels to terminals HTS and
LTS.

 REMote
Place both J1 jumpers here to
route current source to terminals
HTI and LTI. Connect these
terminals to remote thermistor or
RTD. Sense with any sense
channel.

See figure on page 41 to remove the cover

Figure 2-9: Temperature Sensing for VT1415A Terminal Module

Wiring and Attaching the Terminal Module

Figures 2-10 and 2-11 show how to open, wire, and attach the terminal
module to a VT1415A.

Chapter 2 Field Wiring 41

A. Release Screws

B. Press Tab Forward
 and Release

Tab

Remove Clear Cover1 2 Remove and Retain Wiring Exit Penal

Remove 1 of the 3
wire exit panels

Route Wiring4

Tighten wraps to
secure wires

Make Connections3
Use wire

Size 20-26
AEG

5mm
0.2"

VW1 Flammability
Rating

Push down on lever,
insert wire into terminal
and release.

Special tool P/N 8710-2127
(shipped with Terminal
 Module)

Figure 2-10: Wiring and Connecting the VT1415A Terminal Module

42 Field Wiring Chapter 2

VT1415A
Module

Push in the Extraction Levers to Lock the
Terminal Module onto the VT1415A

Replace Wiring Exit Panel

Install the Terminal
Module

Replace Clear Cover

A. Hook in the top cover tabs
 onto the fixture

B. Press down and
 tighten screws

Keep wiring exit panel
hole as small as
possible

Cut required
holes in panels

for wire exit

Install Mylar Thermal Barrier
on Terminal Module

connectors

Extraction
Levers

Figure 2-11: Wiring and Connecting the VT1415A Terminal Module (Cont.)

Attaching/Removing the VT1415A Terminal Module

Figure 2-12 shows how to attach the terminal module to the VT1415A and
Figure 2-13 shows how to remove it.

Chapter 2 Field Wiring 43

VT1415A

Align the Terminal Module
connectors to the VT1415A
module connectors

Apply gentle pressure to attach
the Terminal Module to the
VT1415A Module

Extend the extraction levers on the
Terminal Module

Push in the extraction levers
to lock the Terminal Module
onto the VT1415A Module

Install Mylar Thermal Barrier
on Terminal Module

connectors

Extraction Lever

Use a small screwdriver
to pry and release the
two extraction levers

Extraction
Levers

Figure 2-12: Attaching the VT1415A Terminal Module

44 Field Wiring Chapter 2

VT1415A

Release the two extraction
levers and push both levers
out simultaneously

Extraction Lever

Extraction Lever

Extraction Lever

Use a small screwdriver
to pry and release the
two extraction levers

Free and remove the Terminal
Module from the A/D Module

Figure 2-13: Removing the VT1415A Terminal Module

Adding Components to the Terminal Module

The back of the terminal module printed circuit board (PCB) provides
surface mount pads which can be used to add serial and parallel components
to any channel’s signal path. Figure 2-14 shows additional component
locator information (see the schematic and pad layout information on the
back of the terminal module PCB). Figure 2-15 shows some usage example
schematics.

Chapter 2 Field Wiring 45

Figure 2-14: Additional Component Location Information

TO VT1413A/VT1415ATO USER WIRING

TO USER WIRING

SH

SL

TO USER WIRING

Default Circuit

 4 to 20 mA Sense
5 V Full Scale with 250 Ohm (must use 16 Volt range)
4 V Full Scale with 200 Ohm (can use 4 Volt range for better resolution)

Normal Mode Low-Pass Filter Circuit

HI

HI

HI
HI HI

LO

LO

LO
LO LO

SH

0 Ohms P
H

L

P
H

L

2
0

0
 O

h
m

s
o

r
2

5
0

 O
h

m
s

P
H

L

P
H

P
H

P
H

P
L

P
L

P
L

0 Ohms

0 Ohms

0 Ohms

10 kOhms

SL

10 kOhms

SL

TO VT1413A/VT1415A

TO VT1413A/VT1415A

4 - 20 mA NOTE: Input must not exceed common mode limits (usually
 ±16 Volts unless attenuated with a VT1513A)

Figure 2-15: Series & Parallel Component Examples

Terminal Module Wiring Maps

Figure 2-16 shows the Terminal Module map for the VT1415A.

46 Field Wiring Chapter 2

Top

All wiring entering Terminal
Module passes under this

strain relief bar

H24
L24
G24
H25
L25
G25
H26
L26
G26
H27
L27
G27
H28
L28
G28
H29
L29
G29
H30
L30
G30
H31
L31
G31

H16
L16
G16
H17
L17
G17
H18
L18
G18
H19
L19
G19
H20
L20
G20
H21
L21
G21
H22
L22
G22
H23
L23
G23

H08
L08
G08
H09
L09
G09
H10
L10
G10
H11
L11
G11
H12
L12
G12
H13
L13
G13
H14
L14
G14
H15
L15
G15

H00
L00
G00
H01
L01
G01
H02
L02
G02
H03
L03
G03
H04
L04
G04
H05
L05
G05
H06
L06
G06
H07
L07
G07

G32
L32
H32
G33
L33
H33
G34
L34
H34
G35
L35
H35
G36
L36
H36
G37
L37
H37
G38
L38
H38
G39
L39
H39

GND
GND
GND
GND
LTS
HTS
LTI
HTI

GND
TRIG
GND
LCAL
HCAL
LOHM
HOHM
GND
GND
GND

G40
L40
H40
G41
L41
H41
G42
L42
H42
G43
L43
H43
G44
L44
H44
G45
L45
H45
G46
L46
H46
G47
L47
H47

G48
L48
H48
G49
L49
H49
G50
L50
H50
G51
L51
H51
G52
L52
H52
G53
L53
H53
G54
L54
H54
G55
L55
H55

G56
L56
H56
G57
L57
H57
G58
L58
H58
G59
L59
H59
G60
L60
H60
G61
L61
H61
G62
L62
H62
G63
L63
H63

Heavy line indicates the side
of the terminal block on

which the wire enters

Figure 2-16: VT1415A Terminal Module Map

Terminal Module Option

Option A3F Option A3F allows a VT1415A to be connected to a VT1586A Rack Mount
Terminal Panel. The option provides four SCSI plugs on a Terminal Module
to make connections to the Rack Mount Terminal Panel using four
separately ordered SCSI cables. Option A3F Is shown in Figure 2-17.

Rack Mount Terminal
Panel Accessories

There are two different cables available for connecting the VT1586A Rack
Mount Terminal Panel to the VT1415A Option A3F. In both cases, four
cables are required if all 64-channels are needed. These cables do not come
with the VT1415A Option A3F and must be ordered separately.

Chapter 2 Field Wiring 47

Figure 2-17: Option A3F

Standard Cable

This cable (VT1588A) is a 16-channel twisted pair cable with an outer
shield. This cable is suitable for relatively short cable runs.

Custom Length Cable

This cable is available in custom lengths. It is a 16-channel twisted pair
cable with each twisted pair individually shielded to provide better quality
shielding for longer cable runs. Contact a VXI Technology Sales
Representative for more information.

HF Common Mode Filters

Optional High Frequency (HF) Common Mode Filters are on the VT1586A
Rack Mount Terminal Panel’s input channels (VT1586A-001, RF Filters).
They filter out ac common mode signals present in the cable that connects
between the terminal panel and the device under test. The filters are useful
for filtering out small common mode signals below 5 VP-P. To order these
filters, order P/N: 73-0027-001 (Final Assy, VT1586A-001, Rf Filters Large
Common Mode Signals).

48 Field Wiring Chapter 2

Faceplate Connector Pin-Signal Lists

Figure 2-18 shows the Faceplate Connector Pin Signal List for the
VT1415A.

Chapter 2 Field Wiring 49

GND
GND
GND
GND
GND
G0
G1
H08
L08
H11
L11
H14
L14
H17
L17
H20
L20
H23
L23
G2
H27
L27
H30
L30
G3
G3
GND
GND
GND
GND
GND
GND

H00
H01
H02
H03
H04
H05
H06
H07
H08
H10
H12
H13
L15
H16
H18
H19
H21
H22
L24
H25
H26
H28
H29
L31
G3
G3
GND
HOHM
HCAL
GND
H_I
GND

L00
L01
L02
L03
L04
L05
L06
L07
L09
L00
L02
H03
L05
H06
L08
H09
L10
H22
L24
L25
L26
L28
H29
L31
G3
G3
GND
LOHM
LCAL
GND
L_I
GND

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

Count
From
Top

32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

Count
From

Bottom

GND
GND
GND
TST-A
GND
G4
G4
G4
L33
H33
L36
H36
G5
L40
H40
L43
H43
L46
H46
L49
H49
L52
H52
L55
H55
G6
G7
GND
GND
GND
GND
GND

GND
GND
GND
GND
GND
G4
G4
G4
L32
L34
L35
L37
L38
L39
L41
L42
L44
L45
L47
L48
L50
L51
L53
L54
L56
L57
L58
L59
L60
L61
L62
L63

GND
TRG
GND
SYSF
GND
G4
G4
G4
H32
H34
H35
H37
L38
L39
L41
L42
H44
L45
H47
H48
H50
H51
H53
H54
H56
H57
H58
H59
H60
H61
H62
H63

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

HCAL
LCAL
GND
HOHM
LOHM
GND

HCAL
LCAL
GND
HOHM
LOHM
GND

6
5
4
3
2
1

1
2
3
4
5
6

VT1415A

bus

Closed Loop
Controller

Figure 2-18: VT1415A Connector Pin-Signal List

Notes

50 Field Wiring Chapter 2

Chapter 3

Programming the VT1415A for PID Control

About This Chapter The focus in this chapter is to show the VT415A’s programming model.
The programming model is basically a sequence of SCPI commands an
application program sends to a VT1415A to configure it to execute defined
PID (proportional integral derivative) algorithms. This programming model
is virtually the same for the pre-defined PID algorithms and user-defined
custom algorithms. This chapter contains:

· Overview of the VT1415A Loop Controller page 52
Programming Model . page 53

· Executing the Programming Model . page 55
Programming Overview Diagram page 57

- Setting up Analog Input and Output Channels page 58
Configuring Programmable SCP Parameters page 58
Linking Input Channels to EU Conversion page 60
Linking Output Channels to Functions page 67

- Setting up Digital Input and Output Channels page 68
Digital Input Channels . page 68
Digital Output Channels . page 69

- Performing Channel Calibration (Important!) page 72
- Defining PID algorithms . page 73

The VT1415A’s Standard PID algorithms page 73
Pre-setting PID variables and coefficients page 77

- Defining Data Storage . page 77
Specifying the Data Format . page 77
Selecting the FIFO Mode . page 78

- Setting up the Trigger System . page 78
Arm and Trigger Sources . page 78
Programming the Trigger Timer page 80

- INITiating/Running Algorithms . page 81
The Operating Sequence . page 82

- Reading Running Algorithm Values page 83
Reading History Mode Values From the FIFO page 84
Reading Algorithm Values From the CVT page 83
Reading Algorithm Variables . page 83

- Modifying Algorithm Variables . page 87
Updating Algorithm Variables page 87
Enabling/Disabling Algorithms page 87
Setting Algorithm Execution Frequency page 88

· A Quick-Start PID Algorithm Example page 89

· Algorithm Tuning . page 91

· Using the Status System . page 91

· VT1415A Background Operation. page 98

· Updating the Status System and VXI Interrupts page 98

· Creating and Loading Custom EU Tables page 99

· Compensating for System Offsets . page 102

Chapter 3 Programming the VT1415A for PID Control 51

· Detecting Open Transducers . page 104

· More on Auto Ranging . page 106

· Settling Characteristics . page 106

Overview of the VT1415A Algorithmic Loop Controller

The first part of this chapter will provide an overview of the VT1415A’s
operating model and programming. This is intended to facilitate
understanding the affects of programming commands that are seen in later
examples and detailed discussions.

Operational
Overview

This section describes how the VT1415A gathers input data, executes an
algorithm and outputs control signals. Figure 3-1 shows a simplified
functional block diagram.

Algorithmic? The VT1415A is an algorithmic process loop controller. It can provide as
many as 32 single-input/single-output control loops in a single VXIbus
module. The term "algorithmic" indicates that the VT1415A is a digital loop
controller. An internal Digital Signal Processor (DSP) executes program
code that implements a control algorithm. The algorithm is defined for a
control loop by selecting one of the VT1415A’s two standard PID
algorithms or by downloading a custom algorithm created in the
VT1415A’s Algorithm Programming Language (a ‘C’-like language). Once
defined, the control loop algorithm becomes a subprogram function that is
executed each time the module receives a trigger signal and after all input
signal channels have been scanned.

52 Programming the VT1415A for PID Control Chapter 3

Figure 3-1: Simplified Functional Block Diagram

 Algorithm Program Memory

 alg1()
 {
 static float input_val, val_out;
 input_val = I100;
 pid algorithm....
 O108 = val_out;
 }

 alg2()
 {
 static float input_val, val_out;
 input_val = I101;
 pid algorithm....
 O109 = val_out;
 }

 alg3()
 {
 static float input_val, val_out;
 input_val = I102;
 pid algorithm....
 O116 = val_out;
 }

Digital State

Frequency

Totalize

A/D

A
n
a
lo

g
 M

u
ltip

le
x
e
r

 Digital Signal Processor (DSP)

EU Conversion(EU)

Trigger Timer

A
n
a
lo

g
 O

u
tp

u
t S

C
P

s

Voltage

Temperature

Resistance

Strain

Sample/Hold

Current

Voltage

Static States

Pulse per Trigger

Pulse Width Modulation

Frequency Modulation

Trigger System

D
ig

ita
l O

u
tp

u
t S

C
P

s

D
ig

ita
l In

p
u
t S

C
P

s

Output
SystemInput Buffer

I100 to
I163

Input Buffer
O100 to

O163

Process Data In The VT1415A provides advanced data acquisition capability which includes
on-board signal conditioning and Engineering Unit (EU) conversion. Signal
conditioning creates accurate signal values from a wide range of process
sensors. The EU conversion means that signal values measured at process
sensors will be returned in standard engineering units such as volts, ohms,
degrees Celsius, or microstrain. Further, custom EU conversions can be
defined to convert signal values from standard sensors, to values more
closely related to the process variables being measured. For instance,
voltage from a pressure sensor can be converted to PSI. The input data
appear to the control algorithm as program constants. They are constants
only in that the algorithmic program cannot change their values. These
values are updated each time a trigger causes the input channels to be
scanned. After all input channels are scanned, each of the defined and
enabled control algorithms are executed.

Process Control Out Control output to the process is determined by the executing algorithms. In
general the algorithm assigns a value to one of 64 special “output channel”
identifiers. If the algorithm executes the statement: 0107 = control_out_var;
the value of the variable “control_out_var” is placed in the Output Channel
Buffer entry for channel 7. After all active algorithms have been executed,
the buffer values (one for each assigned channel) are sent to the output
Signal Conditioning Plug-Ons (SCP) at those channel positions. The
characteristic of the actual output quantity is determined by the type of
output SCP that is installed at the specified channel. For instance, if a
VT1532A Current Output SCP were installed at the specified channel, the
parameter value could range from -0.01 to +0.01 amps (±10 mA). A
Voltage Output SCP at the channel would allow a parameter value of -16 to
+16 volts.

Programming Model

The SCPI command set is used to configure, start, stop, and communicate
with the VT1415A. The module can be in one of two states: the “idle” state
or the “running” state. The INITiate[:IMMediate] command moves the module
from the “idle” state to the “running” state. These two states will be called
“before INIT”and “after INIT.” See Figure 3-2 for the following discussion.

Before INIT, the module is in the Trigger Idle State and its DSP chip (the
on-board control processor) is ready to accept virtually any of its SCPI or
Common commands. At this point, send it commands that configure SCPs,
link input channels to EU conversions, configure digital input and output
channels, configure the trigger system, and define control algorithms.

Chapter 3 Programming the VT1415A for PID Control 53

After INIT (and with trigger events occurring), the DSP is busy measuring
input channels, executing algorithm code, sending internal algorithm values
to the CVT and updating control outputs. To insulate the DSP from
commands that would interrupt its algorithm execution, the VT1415A’s
driver disallows execution of most SCPI commands after INIT. The driver
does allow certain commands that make sense while the module is running
algorithms. These are the commands that read and update algorithm
variables, retrieve CVT and FIFO data and return Status System values. The
Command Reference Section (Chapter 6) specifies whether a command is
accepted before or after INIT.

The next section in this chapter (“Executing the Programming Model”)
shows the programming sequence that should be followed when setting up
the VT1415A to run algorithms.

54 Programming the VT1415A for PID Control Chapter 3

yes

yes

no

no

Power-On

Before INIT

Commands Accepted:

All commands except:
 *TRG, TRIGGER and ALG:UPD:CHAN

Trigger Idle
State

Waiting for
Trigger State

Input,
Execute Algs,

Output

Trig Count
Exhausted?

*RST or ABORt

INITiate[:IMM]

TIMer or other
trigger event

After INIT

Commands Accepted:

All commands except:
 *RST

ABORT
Most ALG subsystem
ARM[:IMM]
FETCH?
FORMAT
SOURce:DATA:...
STATus...
SYSTem...
*TRG & Trigger[:IMMediate] (if TRIG:SOUR is HOLD)

Figure 3-2: Module States

Executing the Programming Model

This section shows the sequence of programming steps that should be used
for the VT1415A. Within each step, most of the available choices are shown
using command sequence examples, with further details available in the
Command Reference Chapter 6.

IMPORTANT! It is very important while developing an application to execute the
SYSTem:ERRor? command after each programming command. This is the
only way to know if there is a programming error. SYST:ERR? returns an
error number and description (or +0, “No Error”).

Power-On and *RST
Default Settings

Some of the programming operations that follow may already be set after
Power-on or after a *RST command. Where these default settings coincide
with the configuration settings required, it is unnecessary to execute a
command to set them. These are the default settings:

· No algorithms defined

· No channels defined in channel lists

· Programmable SCPs configured to their Power-on defaults
(see individual SCP User’s Manuals)

· All analog input channels linked to EU conversion for voltage

· All analog output channels ready to take values from an algorithm

· All digital I/O channels set to input static digital state

· ARM:SOURce IMMediate

· TRIGger:SOURce TIMer

· TRIG ger:COUNt INF (0)

· TRIGer:TIMer .010 (10 ms)

· FORMat ASC,7 (ASCII)

· SENSe:DATA:FIFO:MODE BLOCking

Figure 3-3 provides a quick reference to the Programming model. Refer to this,
together with the Programming Model Block Diagram to keep an overview of the
VT1415A SCPI programming sequence. Again, where default settings match the
desired settings, that configuration step can be skipped.

Chapter 3 Programming the VT1415A for PID Control 55

56 Programming the VT1415A for PID Control Chapter 3

Figure 3-3: Programming Sequence

Setup Algorithm(s) and
Preset Algorithm Variables

Calibrate Channel Set-up
(after 1 hour warm-up)

Set up Digital I/O Channels

Link Engineering Units (Functions)
to Analog Input Channels

INP: ..., OUTP: ..., Commands

*CAL? or CAL:SETup Command

INP: ..., OUTP: ...,[SENSe:]..., SOURce: ...

[SENSe:]FUNC: ¼ Commands

ALGorithm:DEFine “GLOBALS”,...
Command

FORMAT Command

Trigger events execute algs

Set up SCP Amps, Filters and
Measurement Excitation Sources

Step 7

Step 6

Step 8

Step 4

Step 3

Step 2

INITiate commandInitiate Trigger System

Select FIFO Mode
(if using History Mode)

[SENS:]DATA:FIFO:MODE Command

Step 10

Setup Trigger System
ARM:SOUR, TRIG:SOUR , TRIG:COUNt,
TRIG:TIMer CommandStep 5

ALG:DEF, ALG:ARRay, ALG:SCALar,
ALG:SCAN:RATio, ALG:UPDateStep 9

Retrieve DataStep 11
SENS:DATA:FIFO: ..., SENS:CVT: ...,
ALG:SCAL?and ALG:ARR? commands

Modify Algorithm VariablesStep 12
ALG:ARRay, ALG:SCALar,
ALG:STAT, ALG:SCAN:RATio, ALG:UPD

Select Data Format

Define Global Variables
(optional)

Step 1

Power On or *RST

Chapter 3 Programming the VT1415A for PID Control 57

IN
P

u
t:F

IL
T

e
r

IN
P

u
t:G

A
IN

O
U

T
P

u
t:C

U
R

R
e
n

t:A
M

P
L

itu
d

e
O

U
T

P
u

t:C
U

R
R

e
n

t:S
T

A
T

e
O

U
T

P
u

t:S
H

U
N

t
O

U
T

P
u

t:V
O

L
T

a
g

e
:A

M
P

litu
d

e

4

[S
E

N
S

e
:]D

A
T

A
:F

IF
O

[:A
L

L
]?

 :C

O
U

N
t?

 :H
A

L
F

?
 :P

A
R

T
?

 :H
A

L
F

?
 :R

E
S

e
t

5

6

T
R

IG
g

e
r:C

O
U

N
t

T
R

IG
g

e
r:T

IM
e
r

T
R

IG
g

e
r:S

O
U

R
c
e

O
U

T
P

u
t:T

T
L

T
rg

<
 n

>

O
U

T
P

u
t:T

R
IG

g
e
r:S

O
U

R
c
e

7

2

[S
E

N
S

e
:]F

U
N

C
tio

n
:R

E
S

is
ta

n
c
e

[S
E

N
S

e
:]F

U
N

C
tio

n
:S

T
R

A
IN

: ...
[S

E
N

S
e
:]F

U
N

C
tio

n
:T

E
M

P
e
ra

tu
re

[S
E

N
S

e
:]F

U
N

C
tio

n
:V

O
L

T
a
g

e

[S
E

N
S

e
:]D

A
T

A
:C

V
T

a
b

le
?

 :R

E
S

e
t

[S
E

N
S

e
:]D

A
T

A
:F

IF
O

:M
O

D
E

1
1

1

C
A

L
ib

ra
tio

n
:C

O
N

F
ig

u
ra

tio
n

:R
E

S
is

ta
n

c
e

 :V
O

L
T

a
g

e
 :V

A
L

u
e
:R

E
S

is
ta

n
c
e

 :V
O

L
T

a
g

e
:S

T
O

R
e

:Z
E

R
O

?

* C
A

L
?

C

A
L

ib
ra

tio
n

:S
E

T
u

p

 :S
E

T
u

p
?

CALibration:TARE
:TARE?

A
R

M
:S

O
U

R
c
e

w
rite

c
v

t ()

w
rite

b
o

th
 ()

w
rite

fifo
 ()

O
U

T
P

u
t:P

O
L

a
rity

O
U

T
P

u
t:T

Y
P

E
S

O
U

R
c
e
:F

M
:S

T
A

T
e

S
O

U
R

c
e
:F

U
N

C
tio

n
:C

O
N

D
itio

n
S

O
U

R
c
e
:F

U
N

C
tio

n
:P

U
L

S
e

S
O

U
R

c
e
:F

U
N

C
tio

n
:S

Q
U

a
re

S
O

U
R

c
e
:P

U
L

M
:S

T
A

T
e

S
O

U
R

c
e
:P

U
L

S
e
:P

E
R

io
d

S
O

U
R

c
e
:P

U
L

S
e
:W

ID
T

h

IN
P

u
t:P

O
L

a
rity

S
E

N
S

e
:F

R
E

Q
u

e
n

c
y
:A

P
E

R
tu

re
S

E
N

S
e
:F

U
N

C
tio

n
::C

O
N

D
itio

n
S

E
N

S
e
:F

U
N

C
tio

n
:F

R
E

Q
u

e
n

c
y

S
E

N
S

e
:F

U
N

C
tio

n
:T

O
T

a
liz

e
S

E
N

S
e
:F

R
E

Q
u

e
n

c
y

S
E

N
S

e
:T

O
T

ta
liz

e
:R

E
S

e
t:M

O
D

E

F
O

R
M

a
t[:D

A
T

A
]

S
T

A
T

u
s
: . . .

S
Y

S
T

e
m

:E
R

R
o

r?

1
0

3

1
2 9 8

IN
IT

ia
te

[:IM
M

e
d

ia
te

]

A
L

G
:D

E
F

 ‘G
L

O
B

A
L

S
’,...

A
L

G
:D

E
F

 ‘A
L

G
n

’,...
A

L
G

:A
R

R
a
y

A
L

G
:S

C
A

L
a
r

A
L

G
:S

C
A

N
:R

A
T

io

A
L

G
:U

P
D

a
te

Programming Model Block Diagram

Setting Up Analog Input and Output Channels

This section covers configuring input and output channels to provide the
measurement values and output characteristics that algorithms need to
operate.

Configuring
Programmable

Analog SCP
Parameters

This step applies only to programmable Signal Conditioning Plug-Ons such
as the VT1503A Programmable Amplifier/Filter SCP, the VT1505A
Current Source SCP, the VT1510A Sample and Hold SCP and the
VT1511A Transient Strain SCP. Refer to the individual SCP’s user’s
manual to determine the gain, filter cutoff frequency, or excitation
amplitude selections that it may provide.

Setting SCP Gains An important concept to understand about input amplifier SCPs is that,
given a fixed input value at a channel, changes in channel gain do not
change the value an algorithm will receive from that channel. The DSP chip
(Digital Signal Processor) keeps track of SCP gain and Range Amplifier
settings and “calculates” a value that reflects the signal level at the input
terminal. The only time this in not true is when the SCP gain chosen would
cause the output of the SCP amplifier to be too great for the selected A/D
range. An example: with SCP gain set to 64, an input signal greater than
±0.25 volts would cause an overrange reading even with the A/D set to its
16 volt range.

The gain command for SCPs with programmable amplifiers is:

IN Put:GAIN <gain>,(@<ch_list>) to se lect SCP chan nel gain.

The gain selections provided by the SCP can be assigned to any channel
individually or in groups. Send a separate command for each gain selection.
An example for the VT1503A programmable Amp & Filter SCP:

To set the SCP gain to 8 for channels 0, 4, 6, and 10 through 19 send:

INP:GAIN 8,(@100,104,106,110:119)

To set the SCP gain to 16 for channels 0 through 15 and to 64 for channels
16 through 23 send:

INP:GAIN 16,(@100:115)

INP:GAIN 64,(@116:123)

or to combine into a single command message:

INP:GAIN 16,(@100:115);GAIN 64,(@116:123)

Setting Filter
Cutoff Frequency

The commands for programmable filters are:

IN Put:FIL Ter[:LPASs]:FRE Quency <cut off_freq>,(@<ch_list>) to se lect cut off
fre quency

IN Put:FIL Ter[:LPASs][:STATe] ON | OFF,(@<ch_list> to en able or dis able in put
fil ter ing

58 Programming the VT1415A for PID Control Chapter 3

The cutoff frequency selections provided by the SCP can be assigned to any
channel individually or in groups. Send a separate command for each
frequency selection. For example:

To set 10 Hz cutoff for channels 0, 4, 6, and 10 through 19 send:

INP:FILT:FREQ 10,(@100,104,106,110:119)

To set 10 Hz cutoff for channels 0 through 15 and 100 Hz cutoff for
channels 16 through 23 send:

INP:FILT:FREQ 10,(@100:115)

INP:FILT:FREQ 100,(@116:123)

or to combine into a single command message

INP:FILT:FREQ 10,(@100:115);FREQ 100,(@116:123)

By default (after *RST or at power-on) the filters are enabled. To disable or
re-enable individual (or all) channels, use the INP:FILT ON | OFF,
(@<ch_list>) command. For example, to program all but a few filters on,
send:

INP:FILT:STAT ON,(@100:163) all channel’s filters on (same as at
*RST)

INP:FILT:STAT OFF,(@100, 123,146,163) only channels 0, 23, 46, and 63
OFF

Setting the VT1505A
Current Source SCP

The Current Source SCP supplies excitation current for resistance type
measurements. These include resistance and temperature measurements
using resistance temperature sensors. The commands to control Current
Source SCPs are:
OUT Put:CUR Rent:AM PLi tude <am pli tude>,(@<ch_list>) and
OUT Put:CUR Rent[:STATe] <en able>.

· The <amplitude> parameter sets the current output level. It is specified
in units of amps dc and for the VT1505A SCP can take on the values
30e-6 (or MIN) and 488e-6 (or MAX). Select 488 µA for measuring
resistances of less than 8,000 W. Select 30 µA for resistances of 8,000 W
and above.

· The <ch_list> parameter specifies the Current Source SCP channels that
will be set.

To set channels 0 through 9 to output 30 µA and channels 10 through 19 to
output 488 µA:

OUTP:CURR 30e-6,(@100:109)

OUTP:CURR 488e-6,(@110:119) separate command per output level

or to combine into a single command message:

OUTP:CURR 30e-6,(@100:109);CURR 488e-6,(@110:119)

Chapter 3 Programming the VT1415A for PID Control 59

NOTE The OUT Put:CUR Rent:AM PLi tude com mand is only for pro gram ming
ex ci ta tion cur rent used in re sis tance mea sure ment con fig u ra tions. It is does
not pro gram out put DAC SCPs like the VT1532A.

Setting the VT1511A Strain
Bridge SCP Excitation

Voltage

The VT1511A Strain Bridge Completion SCP has a programmable bridge
excitation voltage source. The command to control the excitation supply is
OUT Put:VOLT age:AM PLi tude <am pli tude>,(@<ch_list>)

· The <amplitude> parameter can specify 0, 1, 2, 5, or 10 volts for the
VT1511A’s excitation voltage.

· The <ch_list> parameter specifies the SCP and bridge channel
excitation supply that will be programmed. There are four excitation
supplies in each VT1511A.

To set the excitation supplies for channels 0 through 3 to output 2 volts:

OUTP:VOLT:AMPL 2,(@100:103)

NOTE The OUT Put:VOLT age:AM PLi tude com mand is only for pro gram ming
ex ci ta tion volt age used mea sure ment con fig u ra tions. It is does not pro gram
out put DAC SCPs like the VT1531A.

Linking Channels to
EU Conversion

This step links each of the module’s channels to a specific measurement
type. For analog input channels, this “tells” the on-board control processor
which EU conversion to apply to the value read on any channel. The
processor is creating a list of conversion types vs. channel numbers.

The commands for linking EU conversion to channels are:

[SENSe:]FUNC tion:RE Sis tance <ex cite_cur rent>,[<range>,](@<ch_list>) for
re sis tance mea sure ments

[SENSe:]FUNC tion:STRain:... <ex cite_cur rent>,[<range>,](@<ch_list>) for strain
bridge mea sure ments

[SENSe:]FUNC tion:TEM Per a ture <type>,<sub_type>,[<range>,](@<ch_list>) for
tem per a ture mea sure ments with thermocouples, thermistors, or RTDs

[SENSe:]FUNC tion:VOLT age <range>,(@<ch_list>) for volt age mea sure ments

[SENSe:]FUNC tion:CUS Tom <range>,(@<ch_list>) for cus tom EU
con ver sions.

NOTE At Power-on and after *RST, the default EU Conversion is autorange voltage
for all 64 channels.

60 Programming the VT1415A for PID Control Chapter 3

Linking Voltage
Measurements

To link channels to the voltage conversion send the
[SENSe:]FUNC tion:VOLT age [<range>,] (@<ch_list>) com mand.

· The <ch_list> parameter specifies which channels to link to the voltage
EU conversion.

· The optional <range> parameter can be used to choose a fixed A/D
range. Valid values are: 0.0625, 0.25, 1, 4, 16, or AUTO. When not
specified, the module uses auto-range (AUTO).

To set channels 0 through 15 to measure voltage using auto-range:

SENS:FUNC:VOLT AUTO,(@100:115)

To set channels 16 and 24 to the 16 volt range and 32 through 47 to the
0.0625 volt range:

SENS:FUNC:VOLT 16,(@116,124)

SENS:FUNC:VOLT .625,(@132:147) must send a command per range

or to send both commands in a single command message:

SENS:FUNC:VOLT 16,(@116,124);VOLT .0625,(@123:147)

NOTE When using manual range in combination with amplifier SCPs, the EU
conversion will try to return readings which reflect the value of the input
signal. However, the user must choose range values that will provide good
measurement performance (avoiding over-ranges and selecting ranges that
provide good resolution based on the input signal). In general,
measurements can be made at full speed using auto-range. Auto-range will
choose the optimum A/D range for the amplified signal level.

Linking Resistance
Measurements

To link channels to the resistance EU conversion, send the
[SENSe:]FUNC tion:RE Sis tance <ex cite_cur rent>,[<range>,](@<ch_list>)
com mand.

Resistance measurements assume that there is at least one Current Source
SCP installed (eight current sources per SCP). See Figure 3-4.

Chapter 3 Programming the VT1415A for PID Control 61

The <excite_current> parameter is used only to tell the EU conversion what
the Current Source SCP channel is now set to. <excite_current> is specified
in amps dc and the choices for the VT1505A SCP are 30e-6 (or MIN) and
488e-6 (or MAX). Select 488 µA for measuring resistances of less than

8,000 W. Select 30 µA for resistances of 8,000 W and above.

· The optional <range> parameter can be used to choose a fixed A/D
range. When not specified (defaulted), the module uses auto-range.

· The <ch_list> parameter specifies which channel(s) to link to the
resistance EU conversion. These channels will sense the voltage across
the unknown resistance. Each can be a Current Source SCP channel (a
two-wire resistance measurement) or a sense channel separate from the
Current Source SCP channel (a four-wire resistance measurement). See
Figure 3-4 for diagrams of these measurement connections.

To set channels 0 through 15 to measure resistances greater than 8,000 W
and set channels 16, 20, and 24 through 31 to measure resistances less than
8k (in this case paired to current source SCP channels 32 through 57):

OUTP:CURR:AMPL 30e-6, (@132:147)

set 16 channels to output 30 µA for 8 kW or greater resistances
SENS:FUNC:RES 30e-6, (@100:115)

link channels 0 through 15 to resistance EU conversion (8 kW or greater)
OUTP:CURR:AMPL 488e-6, (@148,149,150:157)

set 10 channels to output 488 µA for less than 8 kW resistances
SENS:FUNC:RES 488e-6, (@116,120,124:132)

link channels 16, 20, and 24 through 32 to resistance EU conversion (less than
8 kW)

62 Programming the VT1415A for PID Control Chapter 3

Two-Wire Measurement
(not recommended**)

Four-Wire Measurement

Current Source SCP Current Source SCP

Any Sense SCP

Field Wiring
HI HI

HI

LO LO

Field Wiring

*150 Ohm 5%

*150 Ohm 5%

* Because of the 150 Ohm resistor in series with each of the
 current source outputs, Two-Wire resistance and temperature
 measurements will have a 300 Ohm offset.

** The current source HI terminal is the negative voltage node.
 The current source LO terminal is the positive voltage node.

Figure 3-4: Resistance Measurement Sensing

Linking Temperature
Measurements

To link channels to temperature EU conversion, send the
[SENSe:]FUNC tion:TEM Per a ture <type>, <sub_type>,
[<range>,](@<ch_list>) com mand.

· The <ch_list> parameter specifies which channel(s) to link to the
temperature EU conversion.

· The <type> parameter specifies RTD, THERmistor, or TC (for
Ther mo Cou ple)

· The optional <range> parameter can be used to choose a fixed A/D
range. When not specified (defaulted), the module uses auto-range.

RTD and Thermistor Measurements

Temperature measurements using resistance type sensors involve all the
same considerations as resistance measurements discussed in the previous
section. See the discussion of Figure 3-4 in “Linking Resistance
Measurements.”

For resistance temperature measurements, the <sub_type> parameter
specifies:

· For RTDs; “85" or ”92" (for 100 W RTDs with 0.00385 or 0.00392
ohms/ohm/ºC temperature coefficients respectively)

· For Thermistors; 2250, 5000, or 10000 (the nominal value of these
devices at 25 ºC)

NOTES 1. Resistance temperature measurements (RTDs and THERmistors)
require the use of Current Source Signal Conditioning Plug-Ons. The
following table shows the Current Source setting that must be used
for the following RTDs and Thermistors:

Required Current Amplitude Temperature Sensor Types and Subtypes

MAX (488 µA)
MIN (30 µA)

 RTD,85 | 92 and THER,2250
THER,5000 | 10000

2. The <sub_type> parameter values of 2250, 5000, and 10000 refer to
thermistors that match the Omega 44000 series temperature response
curve. These 44000 series thermistors have been selected to match
the curve within 0.1 or 0.2 °C.

To set channels 0 through 15 to measure temperature using 2,250 W
thermistors (in this case paired to current source SCP channels 16 through
31):

OUTP:CURR:AMPL 488e-6,(@116:131)

set excite current to 488 µA on current SCP channels 16 through 31

Chapter 3 Programming the VT1415A for PID Control 63

SENS:FUNC:TEMP THER, 2250, (@100:115)

link channels 0 through 15 to temperature EU conversion for 2,250 W
thermistor

To set channels 32 through 47 to measure temperature using 10,000 W
thermistors (in this case paired to current source SCP channels 48 through
63):

OUTP:CURR:AMPL 30e-6,(@148:163)

set excite current to 30 µA on current SCP channels 48 through 63
SENS:FUNC:TEMP THER, 10000, (@132:147)

link channels 32 through 47 to temperature EU conversion for 10,000 W
thermistor

To set channels 48 through 63 to measure temperature using 100 W RTDs
with a TC of 0.00385 ohm/ohm/°C (in this case paired to current source
SCP channels 32 through 47):

OUTP:CURR:AMPL 488e-6,(@132:147)

set excite current to 488 µA on current SCP channels 32 through 47
SENS:FUNC:TEMP RTD, 85, (@148:163)

link channels 48 through 63 to temperature EU conversion for 100 W RTDs
with 0.00385 TC.

Thermocouple Measurements

Thermocouple measurements are voltage measurements that the EU
conversion changes into temperature values based on the <sub_type>
parameter and latest reference temperature value.

· For Thermocouples the <sub_type> parameter can specify CUSTom, E,
EEXT, J, K, N, R, S, T (CUSTom is pre-defined as Type K, no
reference junction compensation. EEXT is the type E for extended
temperatures of 800 °C or above).

To set channels 32 through 40 to measure temperature using type E
thermocouples:

SENS:FUNC:TEMP TC, E, (@132:140)

(see following section to configure a TC reference measurement)

Thermocouple Reference Temperature Compensation

The isothermal reference temperature is required for thermocouple
temperature EU conversions. The Reference Temperature Register must be
loaded with the current reference temperature before thermocouple channels
are scanned. The Reference Temperature Register can be loaded two ways:

1. By measuring the temperature of an isothermal reference junction
during an input scan.

2. By supplying a constant temperature value (that of a controlled
temperature reference junction) before a scan is started.

64 Programming the VT1415A for PID Control Chapter 3

Setting Up a Reference Temperature Measurement

This operation requires two commands, the [SENSe:]REF er ence com mand
and the [SENSe:]REF er ence:CHAN nels com mand.

The [SENSe:]REFerence <type>,<sub_type>,[<range>,](@<ch_list>)
command links channels to the reference temperature EU conversion.

· The <ch_list> parameter specifies the sense channel that is connected to
the reference temperature sensor.

· The <type> parameter can specify THERm is tor, RTD, or CUS Tom. THER
and RTD are re sis tance tem per a ture mea sure ments and use the on-board
122 µA cur rent source for ex ci ta tion. CUS Tom is pre-de fined as a
Type E ther mo cou ple which has a ther mally con trolled ice point
reference junction.

· The <sub_type> parameter must specify:

– For RTDs, “85" or ”92" (for 100 W RTDs with 0.00385 or
0.00392 ohms/ohm/ºC temperature coefficients respectively)

– For Thermistors, only “5000" (See previous note on page 63)

– For CUSTom, only “1"

· The optional <range> parameter can be used to choose a fixed A/D
range. When not specified (defaulted) or set to AUTO, the module uses
auto-range.

Reference Measurement Before Thermocouple Measurements

At this point, the concept of the Scan List will be introduced. As each
algorithm is defined, the VT1415A places any reference to an analog input
channel into the Scan List. When the algorithms are run, the scan list tells
the VT1415A which analog channels to scan during the Input Phase. The
[SENSe:]REF er ence:CHAN nels (@<ref_chan>),(@<meas_ch_list>) is used to
place the <ref_chan> chan nel in the scan list be fore the re lated
ther mo cou ple mea sur ing chan nels in <meas_chan>. Now, when an a log
chan nels are scanned, the VT1415A will in clude the ref er ence chan nel in
the scan list and will scan it be fore the spec i fied thermocouples are scanned.
The ref er ence mea sure ment will be stored in the Ref er ence Tem per a ture
Reg is ter. The ref er ence tem per a ture value is ap plied to the ther mo cou ple
EU con ver sions for thermocouple channel measurements that follow.

Chapter 3 Programming the VT1415A for PID Control 65

A Complete Thermocouple Measurement Command Sequence

The command sequence performs these functions:

· Configures reference temperature measurement on channel 15.

· Configures thermocouple measurements on channels 16 through 23.

· Instructs the VT1415A to add channel 15 to the Scan List and order
channels so channel 15 will be scanned before channels 16 through 23.

SENS:REF THER, 5000, (@115) 5k thermistor temperature for
channel 15

SENS:FUNC TC,J,(@116:123) Type J thermocouple temperature
for channels 16 through 23

SENS:REF:CHAN (@115),(@116:123) reference channel scanned before
channels 16 - 23

Supplying a Fixed Reference Temperature

The [SENse:]REFerence:TEMPerature <degrees_c> command immediately
stores the temperature of a controlled temperature reference junction panel
in the Reference Temperature Register. The value is applied to all
subsequent thermocouple channel measurements until another reference
temperature value is specified or measured. There is no need to use
SENS:REF:CHANNELS.

To specify the temperature of a controlled temperature reference panel:

SENS:REF:TEMP 50 reference temp = 50 °C

Now begin scan to measure thermocouples

Linking Strain
Measurements

Strain measurements usually employ a Strain Completion and Excitation
SCP (VT1506A/07A/11A). To link channels to strain EU conversions send
the [SENSe:]FUNCtion:STRain:<bridge_type> [<range>,](@<ch_list>)

· The <bridge_type> parameter is not a parameter but is part of the
command syntax. The following table relates the command syntax to
bridge type. See the VT1506A, VT1507A, and VT1511A SCP User’s
Manuals for bridge schematics and field wiring information.

Command Bridge Type

:FBENding Full Bending Bridge

:FBPoisson Full Bending Poisson Bridge

:FPOisson Full Poisson Bridge

:HBENding Half Bending Bridge

:HPOisson Half Poisson Bridge

[:QUARter] Quarter Bridge (default)

· The <ch_list> parameter specifies which sense SCP channel(s) to link to
the strain EU conversion. <ch_list> does not specify channels on the
VT1506A/07A Strain Bridge Completion SCPs but does specify one of
the lower four channels of a VT1511A SCP.

66 Programming the VT1415A for PID Control Chapter 3

· The optional <range> parameter can be used to choose a fixed A/D
range. When not specified (defaulted), the module uses auto-range.

To link channels 23 through 30 to the quarter bridge strain EU conversion:

SENS:FUNC:STR:QUAR (@123:130) uses autorange

Other commands used to set up strain measurements are:
[SENSe:]STRain:POIS son
[SENSe:]STRain:EX Ci ta tion
[SENSe:]STRain:GFACtor
[SENSe:]STRain:UN STrained

See the Command Reference Chapter 6 and the VT1506A/07A and
VT1511A User’s Manuals for more information on strain measurements.

Custom EU Conversions See “Creating and Loading Custom EU Conversion Tables” on page 99.

Linking Output
Channels to

Functions

Analog outputs are implemented either by a VT1531A Voltage Output SCP
or a VT1532A Current Output SCP. Channels where these SCPs are
installed are automatically considered outputs. No SOURce:FUNCtion
command is required since the VT1531A can only output voltage, while the
VT1532A can only output current. The only way to control the output
amplitude of these SCPs is through the VT1415A’s Algorithm Language.

Chapter 3 Programming the VT1415A for PID Control 67

Setting Up Digital Input and Output Channels

Setting Up Digital
Inputs

Digital inputs can be configured for polarity and depending on the SCP
model, a selection of input functions as well. The following discussion will
explain which functions are available with a particular Digital I/O SCP
model. Setting a digital channel’s input function is what defines it as an
input channel.

Setting Input Polarity To specify the input polarity (logical sense) for digital channels use the
command INPut:POLarity <mode>,(@<ch_list>). This capability is
available on all digital SCP models. This setting is valid even while the
specified channel in not an input channel. If and when the channel is
configured for input (an input FUNCtion command), the setting will be in
effect.

· The <mode> parameter can be either NORMal or INVerted. When set to
NORM, an input channel with 3 V applied will return a logical 1. When
set to INV, a channel with 3 V applied will return a logic 0.

· The <ch_list> parameter specifies the channels to configure. The
VT1533A has 2 channels of 8 bits each. All 8 bits in a channel take on
the configuration specified for the channel. The VT1534A has 8 I/O bits
that are individually configured as channels.

To configure the lower 8-bit channel of a VT1533A for inverted polarity:

INP:POLARITY INV,(@108) SCP in SCP position 1

To configure the lower 4 bits of a VT1534A for inverted polarity:

INP:POL INV,(@132:135) SCP in SCP position 4

Setting Input Function The VT1533A Digital I/O SCP and the VT1534A Frequency/Totalizer SCP
can both input static digital states. The VT1534A Frequency/Totalizer SCP
can also input Frequency measurements and Totalize the occurrence of
positive or negative edges.

Static State (CONDition) Function

To configure digital channels to input static states, use the
[SENSe:]FUNCtion:CONDition (@<ch_list>) command. Examples:

To set the lower 8-bit channel of n VT1533A in SCP position 4 to input
SENS:FUNC:COND (@132)

To set the upper 4 channels (bits) of a VT1534A in SCP pos 2 to input states
SENS:FUNC:COND (@120:123)

Frequency Function

The frequency function uses two commands. For more on this VT1534A
capability, see the SCP’s User’s Manual.

68 Programming the VT1415A for PID Control Chapter 3

To set the frequency counting gate time execute:
[SENSe:]FREQuency:APERature <gate_time>,(@<ch_list>)

Sets the digital channel function to frequency
[SENSe:]FUNCtion:FREQuency (@<ch_list>)

Totalizer Function

The totalizer function uses two commands also. One sets the channel
function and the other sets the condition that will reset the totalizer count to
zero. For more on this VT1534A capability, see the SCP’s User’s Manual.

To set the VT1534A’s totalize reset mode

[SENSe:]TOTalize:RE Set:MODE INIT | TRIG,(@<ch_list>)

To configure VT1534A channels to the totalizer function
[SENSe:]FUNCtion:TOTalize (@<ch_list>)

Setting Up Digital
Outputs

Digital outputs can be configured for polarity, output drive type and
depending on the SCP model, a selection of output functions as well. The
following discussion will explain which functions are available with a
particular Digital I/O SCP model. Setting a digital channel’s output function
is what defines it as an output channel.

Setting Output Polarity To specify the output polarity (logical sense) for digital channels, use the
command OUT Put:PO Lar ity <mode>,(@<ch_list>). This ca pa bil ity is
avail able on all dig i tal SCP mod els. This set ting is valid even while the
spec i fied chan nel in not an out put chan nel. If and when the chan nel is
con fig ured for out put (an out put FUNC tion com mand), the set ting will be in
effect.

· The <mode> parameter can be either NORMal or INVerted. When set to
NORM, an output channel set to logic 0 will output a TTL compatible
low. When set to INV, an output channel set to logic 0 will output a TTL
compatible high.

· The <ch_list> parameter specifies the channels to configure. The
VT1533A has 2 channels of 8 bits each. All 8 bits in a channel take on
the configuration specified for the channel. The VT1534A has 8 I/O bits
that are individually configured as channels.

To configure the higher 8-bit channel of a VT1533A for inverted polarity:

OUTP:POLARITY INV,(@109) SCP in SCP position 1

To configure the upper 4 bits of a VT1534 for inverted polarity:

OUTP:POL INV,(@132:135) SCP in SCP position 4

Setting Output Drive Type The VT1533A and VT1534A use output drivers that can be configured as
either active or passive pull-up. To configure this, use the command
OUTPut:TYPE <mode>,(@<ch_list>). This setting is valid even while the
specified channel in not an output channel. If and when the channel is
configured for output (an output FUNCtion command), the setting will be in
effect.

Chapter 3 Programming the VT1415A for PID Control 69

· The <mode> parameter can be either ACTive or PASSive. When set to
ACT (the default), the output provides active pull-up. When set to
PASS, the output is pulled up by a resistor.

· The <ch_list> parameter specifies the channels to configure. The
VT1533A has 2 channels of 8 bits each. All 8 bits in a channel take on
the configuration specified for the channel. The VT1534A has 8 I/O bits
that are individually configured as channels.

To configure the higher 8-bit channel of a VT1533A for passive pull-up:

OUTP:TYPE PASS,(@109) SCP in SCP position 1

To configure the upper 4 bits of a VT1534A for active pull-up:

OUTP:TYPE ACT,(@132:135) SCP in SCP position 4

Setting Output Functions Both the VT1533A Digital I/O SCP and VT1534A Frequency/Totalizer
SCP can output static digital states. The VT1534A Frequency/Totalizer SCP
can also output single pulses per trigger, continuous pluses that are width
modulated (PWM and continuous pulses that are frequency modulated
(FM)).

Static State (CONDition) Function

To configure digital channels to output static states, use the
SOURce:FUNCtion:CONDition (@<ch_list>) command. Examples:

To set the upper 8-bit channel of a VT1533A in SCP position 4 to output
SOUR:FUNC:COND (@133)

To set the lower 4 channels (bits) of a VT1534A in SCP pos 2 to output states
SOUR:FUNC:COND (@116:119)

To configure digital channels to output static states:

Variable Width Pulse Per Trigger

This function sets up one or more VT1534A channels to output a single
pulse per trigger (per algorithm execution). The width of the pulse from
these channels is controlled by Algorithm Language statements. Use the
command SOURce:FUNCtion[:SHAPe]:PULSe (@<ch_list>). Example
command sequence:

To set VT1534A channel 2 at SCP position 4 to output a pulse per trigger
SOUR:FUNC:PULSE (@134)

Example algorithm statement to control pulse width to 1 ms
O134 = 0.001

Variable Width Pulses at Fixed Frequency (PWM)

This function sets up one or more VT1534A channels to output a train of

pulses. A companion command sets the period for the complete pulse (

edge to edge). This, of course, fixes the frequency of the pulse train. The
width of the pulses from these channels is controlled by Algorithm
Language statements.

70 Programming the VT1415A for PID Control Chapter 3

Use the command SOURce:FUNCtion[:SHAPe]:PULSe (@<ch_list>). Example
command sequence:

To enable pulse width modulation for VT1534’s first channel at SCP position 4
SOUR:PULM:STATE ON,(@132)

To set pulse period to 0.5 ms (which sets the signal frequency 2 kHz)
SOUR:PULSE:PERIOD 0.5e-3,(@132)

To set function of VT1534A’s first channel in SCP position 4 to PULSE
SOUR:FUNCTION:PULSE (@132)

Example algorithm statement to control pulse width to 0.1 ms (20% duty-cycle)
O132 = 0.1e-3;

Fixed Width Pulses at Variable Frequency (FM)

This function sets up one or more VT1534A channels to output a train of

pulses. A companion command sets the width (edge to ¯ edge) of the
pulses. The frequency of the pulse train from these channels is controlled by
Algorithm Language statements.

Use the command SOURce:FUNCtion[:SHAPe]:PULSe (@<ch_list>).
Example command sequence:

To enable FM for VT1534A’s second channel at SCP position 4
SOUR:FM:STATE ON,(@133)

To set pulse width to 0.3333 ms
SOUR:PULSE:WIDTH 0.3333e-3,(@133)

To set function of VT1534A’s second channel in SCP position 4 to PULSE
SOUR:FUNCTION:PULSE (@133)

Example algorithm statement to control frequency to 1000 Hz
O133 = 1000;

Variable Frequency Square-Wave Output (FM)

To set function of VT1534A’s third channel in SCP position 4 to output a
variable frequency square-wave.

SOUR:FUNCTION:SQUare (@134)
Example Algorithm Language statement to set output to 20 kHz

O134 = 20e3;

For complete VT1534A capabilities, see the SCP’s User’s Manual.

Chapter 3 Programming the VT1415A for PID Control 71

Performing Channel Calibration (Important!)

The *CAL? (also per formed us ing CAL:SETup then CAL:SETup?) is a very
im por tant step. *CAL? gen er ates cal i bra tion cor rec tion con stants for all
an a log in put and out put channels. *CAL? must be per formed in or der for the
VT1415A to de liver its spec i fied accuracy.

Operation and Restrictions *CAL? gen er ates cal i bra tion cor rec tion con stants for each an a log in put
chan nel for off set and gain at all five A/D range settings. For
pro gram ma ble in put SCPs, these cal i bra tion con stants are only valid for the
cur rent con fig u ra tion (gain and fil ter cut-off frequency). This means that
*CAL? cal i bra tion is no lon ger valid if chan nel gain or fil ter set tings
(INP:FILT or INP:GAIN) are changed, but are still valid for changes of chan nel
func tion or range (us ing SENS:FUNC...). Calibration be comes in valid if the
SCPs are moved to different SCP locations.

For analog output channels (both measurement excitation SCPs as well as
control output SCPs), *CAL? also gen er ates cal i bra tion cor rec tion con stants.
These cal i bra tion con stants are valid only for the spe cific SCPs in the
po si tions they are cur rently in. Cal i bra tion be comes in valid if the SCPs are
moved to dif fer ent SCP locations.

How to Use *CAL? When power is turned on to the VT1415A after the SCPs are first installed
(or after an SCP has been moved), the module will use approximate values
for calibration constants. This means that input and output channels will
function although the values will not be very accurate relative to the
VT1415A’s specified capability. At this point, make sure the module is
firmly anchored to the mainframe (front panel screws are tight) and let it
warm up for a full hour. After it has warmed up, execute *CAL?.

What *CAL? Does The *CAL? com mand causes the mod ule to cal i brate A/D off set and gain and
all chan nel off sets. This may take many min utes to com plete. The ac tual
time it will take the VT1415A to com plete *CAL? de pends on the mix of
SCPs in stalled. *CAL? literally performs hun dreds of mea sure ments of the
in ter nal cal i bra tion sources for each chan nel and must al low sev en teen time
con stants of set tling wait each time a fil tered chan nel’s cal i bra tion source
changes value. The *CAL? pro ce dure is in ter nally very so phis ti cated and
re sults in an extremely well calibrated module.

When *CAL? finishes, it returns a +0 value to indicate success. The generated
calibration constants are now in volatile memory as they always are when
ready to use. If the configuration just calibrated is to be fairly long-term,
execute the CAL:STORE ADC command to store these constants in
non-volatile memory. That way the module can restore calibration constants
for this configuration in case of a power failure. After power returns and
after the module warms up, these constants will be relatively accurate.

72 Programming the VT1415A for PID Control Chapter 3

When to Re-Execute *CAL? · When the channel gain and/or filter cut-off frequency is changed on
programmable SCPs (using IN Put:GAIN or IN Put:FIL Ter...)

· When SCPs are reconfigured to different locations. This is true even if
the SCP is replaced with an identical SCP model because the calibration
constants are specific to each SCP channel’s individual performance.

· When the ambient temperature within the mainframe changes
significantly. Temperature changes affect accuracy much more than
long-term component drift. See temperature coefficients in Appendix A
“Specifications.”

NOTE To save time when performing channel calibration on multiple VT1415As
in the same mainframe, use the CAL:SETup and CAL:SETup? com mands (see
Chap ter 6 for de tails).

Defining Standard PID Algorithms

The VT1415A provides two different pre-defined PID algorithms that are
widely used in process control.

The Pre-Defined
PIDA Algorithm

Figure 3-5 shows the block diagram of the PID algorithm that is defined
when ALG:DEFINE is executed
‘ALGn’,’PIDA(<inp_chan nel>,<outp_chan nel>)’

PIDA algorithm implements the classic PID controller. This implementation
was designed to be fast. In order to be fast, this algorithm provides no
clipping limit, alarm limits, status management or CVT/FIFO
communication (History Modes). The algorithm performs the following
calculations each time it is executed:

Chapter 3 Programming the VT1415A for PID Control 73

Figure 3-5 The Simple PID Algorithm "PIDA"

D_factor
variable

S S process

+

+
+

+

-

I_factor
variable

I_out
variable

<outp_chan>
channel

<inp_chan>
channel

Setpoint
variable
Setpoint
variable

P_factor
variable
P_factor
variable

Error
variable

Error
variable

Figure 3-6: The Simple PID Algorithm "PIDA"

D_factor
variable

S S process

+

+
+

+

-

I_factor
variable

I_out
variable

<outp_chan>
channel

<inp_chan>
channel

Setpoint
variable
Setpoint
variable

P_factor
variable
P_factor
variable

Error
variable

Error
variable

Error = Setpoint - <inp_chan>

I_out = I_out + I_factor * Error

<outp_chan> = P_factor * Error + I_out + D_factor * (Error - Error_old)

Error_old = Error

See the program listing for PIDA in Appendix D.

The Pre-Defined
PIDB Algorithm

Figure 3-6 shows the block diagram of a more advanced algorithm that is
favored in process control because of the flexibility allowed by its two
differential terms. The “D” differential term is driven by changes in the
process input measurement. The “SD” differential term is driven by changes
in the setpoint variable value. This algorithm can be defined by executing
ALG:DEFINE ‘ALGn’,’PIDB(<inp_channel>,<outp_channel>,<alarm_chan>).’

Clipping Limits The PIDB algorithm provides clipping limits for its I, D, SD terms and the
value sent to <outp_chan>. Values for these terms are not allowed to range
outside of the set limits. The variables that control clipping are:

I term limits; I_maxand I_min
D term limits; D_maxand D_min
SD term limits; SD_maxand SD_min
<outp_chan> limits; Out_maxand Out_min

74 Programming the VT1415A for PID Control Chapter 3

Figure 3-6: The Advanced Algorithm "PIDB"

S S
+

+

+
-

+
process

+

manual

auto

Man_state
variable
Status.B4

man_out
variable

<outp_chan>
channel

<inp_chan>
channel

Setpoint
variable

SD_factor
variable

P_factor
variable

D_factor
variable

I_factor
variable

 clip limits
 Status.B2

 clip limits
 Status.B1

 alarm limits
 Status.B5

 alarm limits
 Status.B6

 clip limits
 Status.B3

Error
variable

SD_out
variable

D_out
variable

I_out
variable

 clip limits
 Status.B0

 slew rate limited by
 Man_inc variable

Alarm Limits The PIDB algorithm provides Alarm Limits for the process variable PV and
the Error term variable Error. If these limits are reached, the algorithm sets
the value of <alarm_chan> true and generates a VXIbus interrupt. The
variables that control alarm limits are:

Process Variable (from <inp_chan>); PV_maxand PV_min
Error term alarm limits; Error_maxand Error_min

The max and min limits for clipping and alarms are set to 9.9E+37 and
-9.9E+37 respectively when the algorithm is defined. This effectively turns
the limits off until the values are changed with the ALG:SCALAR and
ALG:UPDATE commands as described in “Pre-setting PID Variables and
Coefficients” later in this section.

Manual Control The PIDB algorithm provides for manual control with “bumpless” transfer
between manual and automatic control. The variables that control the
manual mode are:

Auto/Manual control; Man_state (0=automatic (default), 1=manual)
Manual output control; Man_out (defaults to current auto value)
Manual control slew rate; Man_inc (defaults to 9.99E+37 (fast change))

Use the ALG:SCALAR and ALG:UPDATE commands to change the
manual control variables before or after the algorithm is running.

Status Variable The PIDB algorithm uses 7 bits in a status variable (Status) to record the
state of clipping and alarm limits and the automatic/manual mode. When a
limit is reached or the manual mode is set, the algorithm sets a status bit to
1.

Output (<outp_chan>) at clipping limit; Status.B0
I term (I_out) at clipping limit; Status.B1
D term (D_out) reached at limit; Status.B2
SD term (SD_out) at clipping limit; Status.B3
Control mode (Man_state) is manual; Status.B4
Error term (Error) out of limits; Status.B5
Process Variable (<inp_chan>) out of limits; Status.B6

History Mode The PIDB algorithm provides two modes of reporting the values of its
operating variables. A variable <History_mode> controls the two modes.
The default history mode (<History_mode> = 0) places the following
algorithm values into elements of the Current Value Table (the CVT):

Process Variable (<inp_chan>) value to CVT element (10 * n) + 0
Error Term variable (Error) value to CVT element (10 * n) + 1
Output (<outp_chan>) value to CVT element (10 * n) + 2
Status word bits 0 through 6 (Status) to CVT element (10 * n) + 3

Where n is the number of the algorithm from ‘ALGn’
So ALG1 places values into CVT elements 10 through 13, ALG2 places
values in CVT elements 20 through 23 ... ALG32 places values into
CVT elements 320 through 323.

Chapter 3 Programming the VT1415A for PID Control 75

When <History_mode> is set to 1, the operating values are sent to the CVT
as above and they are sent to the FIFO buffer as well. The algorithm writes
a header entry first. The header value is (n * 256) + 4, where n is the
algorithm number from ‘ALGn’ and the number 4 indicates the number of
FIFO entries that follow for this algorithm. This identifies which PIDB
algorithm the 5 element FIFO entry is from.

See the program listing for PIDB in Appendix D.

Defining a PID with
ALG:DEFINE

Select the PID algorithm that will be used (PIDA or PIDB). Determine
which channels to specify for the PID input, PID output and optionally the
digital channel to use as an alarm channel. Execute the command
AL Go rithm[:EX PLicit]:DE Fine‘<alg_name>’,’<alg_def_string>.’

· <alg_name> is ALG1 for the first defined algorithm, ALG2 for the
second etc. up to the maximum of ALG32. The “ALG” is not case
sensitive. That is, ALG1, alg1, aLg1 are all equivalent.

· <alg_def_string> contains a string that selects the PID algorithm
(PIDA... or PIDB...) and specifies the input and output “channels.”
PIDB also takes an alarm “channel.” The general form of the string is:

‘PIDx(<inp_channel>,<outp_channel>,<alarm_channel>)’

Where x is A or B. Note that <alarm_channel> is only supported for
PIDB.

Enclose <alg_def_string> within single quotes (apostrophe
character) or double quotes.

The <alg_def_string> commands the driver’s translator function to
download the program code for the selected PID algorithm into the
VT1415A’s algorithm memory space where is can be executed. The
source code listings for the available PIDs can be seen in Appendix D.

To select PID algorithm PIDB and use channel 0 for its input, channel 8 for
its output and channel 24, bit 0 as the alarm channel, execute:

ALG:DEF ‘ALG1’,’PIDB(I100,O108,O124.B0)’

NOTES 1. If error messages are received when a PID algorithm is defined, the
most common causes are: 1) Trying to re-define an algorithm by the
same name or 2) Using a “channel” identifier that is not defined
(make sure the first letter in channel specifier is uppercase and that
bit identifiers start with the uppercase B).

76 Programming the VT1415A for PID Control Chapter 3

2. The “channels” specified in the PID definition can be any GLOBAL
variable identifier defined prior to the algorithm definition. Use
ALG:DEF ‘GLOBALS’,’<var_declaration_source>.’

ALG:DEF ‘GLOBALS’,’static float pid1_outp, pid2_inp;’

ALG:DEF ‘ALG1’,’PIDB(I114,pid1_outp,O124) Use global for PIDB output

ALG:DEF ‘ALG2’,’PIDB(pid2_inp,O132,O124) Use global for PIDB input

Use ALG:SCALAR ‘GLOBALS’,’<var _name>’,<value> to assign a
value. Use ALG:SCALAR? ‘GLOBALS’,’<var_name>’ to read the value.

Pre-Setting PID Variables and Coefficients

Pre-Setting
PID Variables

To send values to variables in standard PID algorithms, use the command
ALGorithm[:EXPLicit]:SCALar <alg_name>, <variable_name>,<value> .

To set PID ALG1’s gain to 5 and “turn off” the I and D term send:

ALG:SCALAR ‘ALG1’,’P_factor’,5 set gain to 5

ALG:SCALAR ‘ALG1’,’I_factor’,0 turn off I term

ALG:SCALAR ‘ALG1’,’D_factor’,0 turn off D term

ALG:SCALAR ‘ALG1’,’Setpoint’,8 adjust Setpoint to 8 volts

ALG:UPDATE cause all variables to be updated
immediately

Defining Data Storage

Specifying the
Data Format

The format of the values stored in the FIFO buffer and CVT never changes.
They are always stored as IEEE 32-bit Floating point numbers. The
FORMat <format>[,<length>] command merely specifies whether and how
the values will be converted as they are transferred from the CVT and FIFO
to the host computer.

· The <format>[,<length>] parameters can specify:

PACKED Same as REAL,64 except for the values of
IEEE -INF, IEEE +INF and Not-a-Number (NaN).
See FORMat command in Chapter 5 for details.

REAL,32 means real 32-bit (no conversion, fastest)
REAL same as above
REAL,64 means real 64-bit (values converted)
ASCii,7 means 7-bit ASCII (values converted)
ASCii same as above (the *RST condition)

To specify that values are to remain in IEEE 32-bit Floating Point format
for fastest transfer rate:

FORMAT REAL,32

Chapter 3 Programming the VT1415A for PID Control 77

To specify that values are to be converted to 7-bit ASCII and returned as a
15 character per value comma separated list:

FORMAT ASC,7 The *RST, *TST?, and power-on
default format

or

FORM ASC same operation as above

Selecting the
FIFO Mode

The VT1415A’s FIFO can operate in two modes. One mode is for reading
FIFO values while algorithms are executing, the other mode is for reading
FIFO values after algorithms have been halted (ABORT sent).

· BLOCking: The BLOCking mode is the default and is used to read the
FIFO while algorithms are executing. The application program must
read FIFO values often enough to keep it from overflowing (see
“Continuously Reading the FIFO” on page 85). The FIFO stops
accepting values when it becomes full (65,024 values). Values sent by
algorithms after the FIFO is full are discarded. The first value to exceed
65,024 sets the STAT:QUES:COND? bit 10 (FIFO Overflowed) and an
error message is put in the Error Queue (read with SYS:ERR?
command).

· Overwrite: When the FIFO fills, the oldest values in the FIFO are
overwritten by the newest values. Only the latest 65,024 values are
available. In OVERwrite mode, the module must be halted (ABORT
sent) before reading the FIFO (see “Reading the Latest FIFO Values” on
page 86). This mode is very useful when viewing an algorithm’s
response to a disturbance is desired. Run the algorithm with
<History_mode> set to 1. Disturb the loop with a step change. Stop the
algorithm with the ABORT command. The FIFO records the latest
13,004 5-value entries from a PIDB.

To set the FIFO mode (blocking is the *RST/Power-on con di tion):

[SENSe:]DATA:FIFO:MODE OVERWRITE select overwrite mode

[SENSe:]DATA:FIFO:MODE BLOCK select blocking mode

Setting up the Trigger System

Arm and Trigger
Sources

Figure 3-7 shows the trigger and arm model for the VT1415A. Note that
when the Trigger Source selected is TIMer (the default), the remaining
sources become Arm Sources. Using ARM:SOUR al lows an event to be
specified that must oc cur in or der to start the Trig ger Timer. The de fault
Arm source is IM Me di ate (al ways armed).

78 Programming the VT1415A for PID Control Chapter 3

Selecting the Trigger Source In order to start an algorithm execution cycle, a trigger event must occur.
The source of this event is selected with the TRIG ger:SOURce <source>
com mand. The fol low ing ta ble ex plains the pos si ble choices for <source>.

Parameter Value Source of Trigger (after INITiate:¼ command)

BUS TRIGger[:IMMediate], *TRG, GET (for GPIB)

EXTernal “TRG” signal input on terminal module

HOLD TRIGger[:IMMediate]

IMMediate The trigger signal is always true (scan starts when

an INITiate:¼ command is received).

SCP SCP Trigger Bus (future SCP Breadboard)

TIMer The internal trigger interval timer (must set Arm
source)

TTLTrg<n> The VXIbus TTLTRG lines (n = 0 through 7)

NOTES 1. When TRIG ger:SOURce is not TIMer, ARM:SOURce must be set to

IM Me di ate (the *RST con di tion). If not, the INIT com mand will
gen er ate an er ror -221,"Set tings con flict."

2. When TRIG ger:SOURce is TIMer, the trig ger timer in ter val (TRIG:TIM
<in ter val>) must al low enough time to scan all chan nels, ex e cute all
algorithms, and up date all out puts or a +3012, “Trig ger Too Fast”

er ror will be gen er ated dur ing the al go rithm cy cle. See the TRIG:TIM

com mand on page 275 for details.

To set the trigger source to the internal Trigger Timer (the default):

TRIG:SOUR TIMER now select ARM:SOUR

Chapter 3 Programming the VT1415A for PID Control 79

A
R

M
/T

R
IG

g
e

r S
o

u
rce

s

A
R

M
 S

o
u

rce
 S

e
le

cto
r

T
rig

g
e

r S
o

u
rce

 S
e

le
cto

r

EXTernal

Trigger
Timer

Trigger
Enable

TIMer

TRIGger:TIMer <interval>

TRIGger:SOURce <source>

TRIGger:COUNt <count>

Internal
Trigger Signal

Trigger Counter

ARM:SOURce <source>

HOLD

IMMediate

TTLTrg<n>

SCP Trig

BUS

Figure 3-7: Logical Arm and Trigger Model

To set the trigger source to the External Trigger input connection:

TRIG:SOUR EXT an external trigger signal

To set the trigger source to a VXIbus TTLTRG line:

TRIG:SOUR TTLTRG1 the TTLTRG1 trigger line

Selecting Trigger
Timer Arm Source

Figure 3-7 shows that when the TRIG:SOUR is TIMer, the other trigger
sources become Arm sources that control when the timer will start. The
command to select the arm source is ARM:SOURce <source>.

· The <source> parameter choices are explained in the following table

Parameter Value Source of Arm (after INITiate:¼ command)

BUS ARM[:IMMediate]

EXTernal “TRG” signal input on terminal module

HOLD ARM[:IMMediate]

IMMediate The arm signal is always true (scan starts when an

INITiate:¼ command is received).

SCP SCP Trigger Bus (future SCP Breadboard)

TTLTrg<n> The VXIbus TTLTRG lines (n=0 through 7)

NOTE When TRIGger:SOURce is not TIMer, ARM:SOURce must be set to IMMediate
(the *RST condition). If not, the INIT command will generate an error
-221,"Settings conflict."

To set the external trigger signal as the arm source:

ARM:SOUR EXT trigger input on connector module

Programming the
Trigger Timer

When the VT1415A is triggered, it begins its algorithm execution cycle.
The time it takes to complete a cycle is the minimum interval setting for the
Trigger Timer. If programmed to a shorter time, the module will generate a
“Trigger too fast” error. How is the minimum time determined? After all
algorithms are defined, send the ALG:TIME? com mand with its <alg_name>
pa ram e ter set to ‘MAIN.’ This causes the VT1415A’s driver to an a lyze the
time re quired for all four phases of the ex e cu tion cycle: Input, Up date,
Calculate, and Out put. The value re turned from ALG:TIME? ‘MAIN’ is the
min i mum al low able Trig ger Timer in ter val. With this information, ex e cute
the com mand TRIG ger:TIMer <in ter val> and set <in ter val> to a time that is
equal to or greater than the min i mum. See “Start ing the PID Al go rithm” in a
later sec tion in this chap ter for more on phases of the execution cycle.

80 Programming the VT1415A for PID Control Chapter 3

Setting the Trigger
Counter

The Trigger Counter controls how many trigger events will be allowed to
start an input-calculate-output cycle. When the number of trigger events set
with the TRIGger:COUNt command is reached, the module returns to the
Trigger Idle State (needs to be INITiated again). The default Trigger Count
is 0 which is the same as INF (can be triggered an unlimited number of
times). This setting will be used most often because it allows un-interrupted
execution of control algorithms.

To set the trigger count to 50 (perhaps to help debug an algorithm):

TRIG:COUNT 50 execute algorithms 50 times then
return to Trig Idle State.

Outputting Trigger
Signals

The VT1415A can output trigger signals on any of the VXIbus TTLTRG
lines. Use the OUT Put:TTLTrg<n>[:STATe] ON | OFF com mand to se lect one of
the TTLTRG lines and then choose the source that will drive the TTLTRG
line with the com mand OUT Put:TTLTrg:SOURce com mand. For details, see
OUTP:TTLTRG com mands start ing on page 217.

To output a signal on the TTLTRG1 line each time the Trigger Timer cycles
execute the commands:

TRIG:SOUR TIMER select trig timer as trig source

OUTP:TTLTRG1 ON select and enable TTLTRG1 line

OUTP:TTLTRG:SOUR TRIG each trigger output on TTLTRG1

INITiating/Running Algorithms

When the INITiate[:IMMediate] command is sent, the VT1415A builds the
input Scan List from the input channels referenced when the algorithm was
defined with the ALG:DEF command above. The module also enters the
"Waiting For Trigger" state. In this state, all that is required to run the
algorithm is a trigger event for each pass through the input-calculate-output
cycle. To initiate the module, send the command:

INIT module to Waiting for Trigger State

When an INIT command is executed, the driver checks several interrelated
settings programmed in the previous steps. If there are conflicts in these
settings an error message is placed in the Error Queue (read with the
SYST:ERR? command). Some examples:

· If TRIG:SOUR is not TIMer then ARM:SOUR must be IM Me di ate.

· The time it would take to execute all algorithms is longer than the
TRIG:TIMER in ter val cur rently set.

Starting the PID
Algorithm

Once the module is INI Ti ated it can ac cept trig gers from any source spec i fied
in TRIG:SOUR.

Chapter 3 Programming the VT1415A for PID Control 81

TRIG:SOUR TIMER (*RST default)

ARM:SOUR IMM (*RST default)

INIT INIT starts Timer triggers

or
TRIG:SOUR TIMER

ARM:SOUR HOLD

INIT INIT readies module

ARM ARM starts Timer triggers.

... and the algorithms start to execute.

The Operating
Sequence

The VT1415 has four major operating phases. Figure 3-8 shows these
phases. A trigger event starts the sequence:

1. (INPUT): the state of all digital inputs are captured and each analog
input channel that is linked to an algorithm variable is scanned.

2. (UPDATE): The update phase is a window of time made large
enough to process all variables and algorithm changes made after
INIT. Its width is spec i fied by ALG:UPDATE:WINDOW. This win dow is
the only time vari ables and al go rithms can be changed. Vari able and
al go rithm changes can ac tu ally be ac cepted dur ing other phases, but
the changes don’t take place un til an ALG:UPDATE com mand is
re ceived and the up date phase be gins. If no ALG:UPDATE com mand is
pend ing, the up date phase is sim ply used to ac cept vari able and
al go rithm changes from the ap pli ca tion pro gram (us ing ALG:SCAL,
ALG:ARR, ALG:DEF). Data ac quired by ex ter nal spe cial ized
mea sure ment in stru ments can be sent to the algorithms at this time.

3. (CALCULATE): all INPUT and UPDATE val ues have been made
avail able to the al go rithm vari ables and each en abled al go rithm is
ex e cuted. The re sults to be out put from al go rithms are stored in the
Out put Chan nel Buffer.

4. (OUTPUT): each Output Channel Buffer value stored during
(CALCULATE) is sent to its assigned SCP channel. The start of the
OUTPUT phase rel a tive to the Scan Trig ger can be set with the SCPI
com mand ALG:OUTP:DE Lay.

82 Programming the VT1415A for PID Control Chapter 3

Figure 3-8: Sequence of Loop Operations

 4
PUT

 ut table
 to SCP
 nels)

3
CALCULATE

(execute all enabled algorithms)

2
UPDATE

(variables &
algorithms)

Set by ALG:OUTPut:DELay (if any)

···

1
INPUT

(from SCP
channels,
analog &
digital)

Trigger EventTrigger Event

 1
 INP

 (from
 chan
 anal
 digi

4
OUTPUT

(output table
sent to SCP
channels)

Reading Running Algorithm Values

The PIDB algorithm stores its most important working values into the
Current Value Table (CVT) each time it executes. Further, by changing the
variable named “<History_mode>” from 0 to 1, PIDB will also send these
value to the FIFO buffer. In addition, any PID algorithm variable can be
read directly from the running algorithm.

Reading Algorithm
Variables

Use this method to read a variable that isn’t available from the CVT or
FIFO. To directly read algorithm variables, the names of the variables must
be known. The working variables for PIDA and PIDB are listed in the
section “Defining Standard PID Algorithms,” starting on page 73. To read
the values of these variable, use the command AL Go rithm:SCA Lar?
‘<alg_name>’,’<var_name>.’ The com mand re turns the cur rent value of the
vari able <var_name> from the al go rithm <alg_name>. With this command,
it is possible to look at PIDB vari ables that are not au to mat i cally placed in
the CVT. Since the PIDA al go rithm does n’t send val ues to the CVT,
ALG:SCALAR? is the only way to view the con tents of its work ing vari ables.
Example for PIDA:

To return the value of the error term variable from the PIDA ‘ALG3’
ALG:SCALAR? ‘ALG3’,’Error’

program executes “enter” statement now input the value

Reading Algorithm
Values From

the CVT

The Current Value Table (CVT) contains the latest operating parameter
values from executing PIDB algorithms. The algorithms copy these values
to specific elements of the CVT each time they execute. The CVT is fast
because it is a hardware state machine that does not require the DSP to be
involved in the data transaction. Further, a single SCPI command can return
some or all of the CVT’s values, thus reducing the I/O load on an
application program.

Organization of the CVT There is a pre-defined organization for the CVT. Standard PID algorithms
are allocated 10 CVT elements. With up to 32 PIDs possible, 320 elements
are allocated for Standard PIDs. ALG1 can use elements 10-19, ALG2 can
use elements 20-29, ALG3 can use elements 30-39, etc. through ALG32
which can use elements 320-329. Each of these 10 element areas are called
a segment. Note that PIDA does not record its operating values and PIDB
records four values. For PIDB the values stored in each segment are:

Element Variable Description
xx0 Sense Process value monitored
xx1 Error Setpoint value minus Sense value
xx2 Output Process control drive value
xx3 Status Sum of bit values for Clips/Alarms exceeded
xx4 not used
xx5 not used
xx6 not used
xx7 not used
xx8 not used
xx9 not used

Chapter 3 Programming the VT1415A for PID Control 83

The CVT has a total size of 512 elements. Elements 10 through 511 are
available to algorithms. Elements 0 through 9 are reserved for internal use.

NOTE After *RST/Power-on, each element in the CVT contains the IEEE-754
value “Not-a Number” (NaN). Channel values which are a positive
over-voltage return IEEE +INF and negative over-voltage return IEEE
-INF. Refer to the FORMat command in on page 199 for the NaN, +INF,
and -INF values for each data format.

The command used to return values from CVT elements is the
[SENSe:]DATA:CVT? (@<el e ment_list>). The <el e ment_list> parameter has
the same form as a <ch_list> pa ram e ter. The for mat of re turned data is
de pend ent on the cur rent set ting from the FOR Mat com mand.

To access the latest values from PIDB algorithms ALG1:

SENS:DATA:CVT? (@10:13) returns Sense, Error, Output and
Status values from ALG1

execute program input statement here must input 4 values

To return the latest values from PIDB Alg1 and PIDB ALG2:

SENS:DATA:CVT? (@10:13,20:23) returns Sense, Error, Output and
Status values from ALGs 1 and 2

execute program input statement here must input 8 values

To reset the CVT (and set all values to NaN), send the command
[SENSe:]DATA:CVTable:RE Set.

Reading History
Mode Values From

the FIFO

The algorithm history mode enables PIDB algorithms to send their
operating values to the FIFO buffer. To enable the PIDB algorithm to send
its operating values to the FIFO, set the <History_mode> variable to 1. If it
is necessary to retrieve the value of the working variables from every
execution of an algorithm, the FIFO is the best choice. Since it is a buffer
that can store up to 65,024 values, the application program can read the
FIFO values intermittently and still keep up with the data rate from the
algorithm. The commands provided for reading the FIFO are:

FIFO Transfer Commands

[SENSe:]DATA:FIFO[:ALL]? re turns all val ues re main ing in the FIFO. This
com mand should be used only when no more val ues are be ing placed in the
FIFO (al go rithms stopped).

[SENSe:]DATA:FIFO:HALF? re turns 32,768 val ues (ap prox i mately half of the
FIFO ca pac ity) when they be come avail able. This com mand com pletes only
af ter the 32,768 val ues are trans ferred.

[SENSe:]DATA:FIFO:PART? <n_val ues> re turns the num ber of val ues
spec i fied by <n_val ues> (2,147,483,647 max i mum). This com mand
com pletes only af ter <n_val ues> have been trans ferred.

84 Programming the VT1415A for PID Control Chapter 3

FIFO Status Commands

[SENSe:]DATA:FIFO:COUNt? re turns a count of the val ues in the FIFO buffer.
Use with the DATA:FIFO:PART? or DATA:FIFO:ALL? com mands

[SENSe:]DATA:FIFO:COUNt:HALF? re turns a 1 if the FIFO is at least half full
(32,768 val ues) or a 0 if not. Use with the DATA:FIFO:HALF? com mand.

All of the FIFO commands except SENS:DATA:FIFO:ALL? can ex e cute while the
mod ule con tin ues to run al go rithms. Once a FIFO Trans fer com mand is ex e cuted,
the in stru ment cannot ac cept other com mands un til the trans fer is com plete as
spec i fied for each com mand above. The FIFO Sta tus com mands al low the
in stru ment to be polled for avail abil ity of val ues be fore ex e cut ing a trans fer
com mand.

Which FIFO Mode? The way the FIFO is read depends on how the FIFO mode is set in the
programming step “Setting the FIFO Mode” on page 78.

Continuously Reading the FIFO (FIFO mode BLOCK)

If reading the FIFO while algorithms are running, the FIFO mode must be
set to SENS:DATA:FIFO:MODE BLOCK. In this mode, if the FIFO fills up, it
stops ac cept ing val ues from al go rithms. The al go rithms con tinue to ex e cute,
but the lat est data is lost. To avoid los ing any FIFO data, an application
needs to read the FIFO of ten enough to prevent overflow. The flow
di a gram below shows where and when to use the FIFO com mands.

Chapter 3 Programming the VT1415A for PID Control 85

Figure 3-9: Controlling Reading Count

Algorithms
Stopped?

Enough Values In
FIFO?

Any Values In FIFO?

Yes Yes

Execute Bulk Transfer
command

Execute Final Transfer
command

No

Yes

Begin Data Retrieval

Exit Data Retrieval

No

STAT:OPER:COND?
(bit 4 “Measuring”)

DATA:FIFO:COUNT?

DATA:FIFO:PART? <n_values>

No

An example command sequence for Figure 3-9 is provided below. It
assumes that the FIFO mode was set to BLOCK and that at least one
algorithm is sending values to the FIFO (a PIDB with <History_mode> set
to 1).

following loop reads number of values in FIFO while algorithms executing

loop while “measuring” bit is true see STAT:OPER:COND bit 4

SENS:DATA:FIFO:COUNT? query for count of values in FIFO

input n_values here
if n_values >= 16384 Set the minimum block size to

transfer

SENS:DATA:FIFO:PART? n_values ask for n_values

input read_data here Format depends on FORMat cmd

end if
end while loop

following checks for values remaining in FIFO after “measuring” false

SENS:DATA:FIFO:COUNT? query for values still in FIFO

input n_values here
if n_values if any values...

SENS:DATA:FIFO:PART? n_values
input read_data here get remaining values from FIFO

end if

Reading the Latest FIFO Values (FIFO mode OVER)

In this mode, the FIFO always contains the latest values (up to the FIFO’s
capacity of 65,024 values) from running algorithms. In order to read these
values, the algorithms must be stopped (use ABORT). This forms a record of
the algorithm’s latest performance. In the OVERwrite mode, the FIFO cannot
be read while it is accepting readings from algorithms. Algorithm execution
must be stopped before the application program reads the FIFO.

Here is an example command sequence that can be used to read values from
the FIFO after algorithms are stopped (ABORT sent).

SENS:DATA:FIFO:COUNT? query count of values in FIFO

input n_values here
if n_values if any values...

SENS:DATA:FIFO:PART? n_values Format of values set by FORMat

input read_data here get remaining values from FIFO

end of if

86 Programming the VT1415A for PID Control Chapter 3

Modifying Running Algorithm Variables

Updating the
Algorithm Variables

and Coefficients

The values sent with the ALG:SCALAR command are kept in the Update
Queue until an ALGorithm:UPDate command is received.

ALG:UPD cause changes to take place

Updates are performed during phase 2 (see Figure 3-8 on page 82) of the
algorithm execution cycle. The UPDate:WINDow <num_updates> command
can be used to specify how many updates will need to be performed during
phase 2 (UPDATE phase) and assigns a constant window of time to
accomplish all of the updates that will be made. The default value for
<num_updates> is 20. Fewer updates (shorter window) means slightly faster
loop execution times. Each update takes approximately 1.4 µs.

To set the Update Window to allow 10 updates in phase 2:

ALG:UPD:WIND 10 allows slightly faster execution
than default of 20 updates

A way to synchronize variable updates with an external event is to send the
AL Go rithm:UP Date:CHAN nel ‘<dig_chan/bit>’ com mand.

· The <dig_chan/bit> parameter specifies the digital channel/bit that
controls execution of the update operation.

When the ALG:UPD:CHAN com mand is re ceived, the mod ule checks the
cur rent state of the dig i tal bit. When the bit next changes state, pend ing
up dates are made in the next UPDATE Phase.

ALG:UPD:CHAN ‘I133.B0’ perform updates when bit zero of
VT1533A at channel 133 changes
state

Enabling and
Disabling

Algorithms

An algorithm is enabled by default when it is defined. However, the
ALG:STATe <alg_name>, ON | OFF command is provided to enable or
disable algorithms. When an individual algorithm is enabled, it will execute
when the module is triggered. When disabled, the algorithm will not
execute.

NOTE The command ALG:STATE <alg_name>, ON | OFF does not take ef fect un til
an ALG:UPDATE com mand is re ceived. This al lows mul ti ple ALG:STATE
com mands to be sent with their their effects synchronized.

To enable ALG1 and ALG2and disable ALG3 and ALG4:

ALG:STATE ‘ALG1’,ON enable algorithm ALG1

ALG:STATE ‘ALG2’,ON enable algorithm ALG2

ALG:STATE ‘ALG3’,OFF disable algorithm ALG3

ALG:STATE ‘ALG4’,OFF disable algorithm ALG4

ALG:UPDATE changes take effect at next update
phase

Chapter 3 Programming the VT1415A for PID Control 87

Setting Algorithm
Execution
Frequency

The AL Go rithm:SCAN:RA Tio ‘<alg_name>’,<num_trigs> com mand sets the
num ber of trig ger events that must oc cur be fore the next ex e cu tion of
al go rithm <alg_name>. For PID ‘ALG3’ to ex e cute once every twenty
trig gers, send ALG:SCAN:RATIO ‘ALG3’,20, fol lowed by an ALG:UPDATE
com mand. ‘ALG3’ would then ex e cute on the first trig ger af ter INIT, then
the 21st, then the 41st, etc. This can be use ful to ad just the re sponse time of
a con trol al go rithm rel a tive to oth ers. The *RST de fault for all al go rithms is
to execute on every trigger event.

Example Command Sequence

This example command sequence puts together all of the steps discussed so
far in this chapter.

*RST Reset the module

Setting up Signal Conditioning (only for programmable SCPs)

INPUT:FILTER:FREQUENCY 2,(@116:119)
INPUT:GAIN 64,(@116:119)
INPUT:GAIN 8,(@120:123)

set up digital channel characteristics

INPUT:POLARITY NORM,(@125) (*RST default)

OUTPUT:POLARITY NORM,(@124) (*RST default)

OUTPUT:TYPE ACTIVE,(@124)

link channels to EU conversions (measurement functions)

SENSE:FUNCTION:VOLTAGE AUTO,(@100:107) (*RST default)

SENSE:REFERENCE THER,5000,AUTO,(@108)
SENSE:FUNCTION:TEMPERATURE TC,T,AUTO,(@109:123)
SENSE:REFERENCE:CHANNELS (@108),(@109:123)

configure digital output channel for “alarm channel”
SOURCE:FUNCTION:CONDITION (@132)

execute channel calibration

*CAL? can take several minutes

Configure the Trigger System

ARM:SOURCE IMMEDIATE (*RST default)

TRIGGER:COUNT INF (*RST default)

TRIGGER:TIMER .010 (*RST default)

TRIGGER:SOURCE TIMER (*RST default)

specify data format

FORMAT ASC,7 (*RST default)

select FIFO mode

SENSE:DATA:FIFO:MODE BLOCK may read FIFO while running

Define PID algorithm
ALG:DEFINE ‘ALG1’,’PIDB(I100,O124,O132.B0)’

Pre-set PID coefficients
ALG:SCAL ‘ALG1’,’P_factor’,5

ALG:SCAL ‘ALG1’,’I_factor’,0

ALG:SCAL ‘ALG1’,’D_factor’,0

88 Programming the VT1415A for PID Control Chapter 3

initiate trigger system (start algorithm)

INITIATE
retrieve PID data

SENSE:DATA:CVT? (@<element_list>)

A Quick-Start PID Algorithm Example

This example uses the “PIDB” algorithm to control a simulated process
provided by a capacitor, two resistors, and a diode. The object is to control
the voltage level in the capacitor. The example program is written in
C-SCPI. To save space, the program shown here does not include any error
trapping. The source file for this example does implement error trapping.
The source file is named “simp_pid.cs” and can be found in the
VXIplug&play Drivers and Product Manuals CD. See Appendix G for
program listings.

/* C-SCPI Example program for the E1415A Algorithmic Closed Loop Controller
 * file name “simp_pid.cs”
 *
 * This program example shows the use of the intrinsic function PIDB.
 */

/* Standard include files */
#include <stdlib.h>
#include <stdio.h>
#include <stddef.h>
#include <math.h>

/* Instrument control include files */
#include <cscpi.h> /* C-SCPI include file */

/* Declare constants */
#define E1415_ADDR “vxi,208" /* The C-SCPI address of your E1415 */
INST_DECL(e1415, “E1415A”, REGISTER); /* E1415 */

/* Main program */
void main()

Chapter 3 Programming the VT1415A for PID Control 89

Figure 3-10: Quick Start Example PID

PIDA Algorithm

Chn 0 HI

Chn 0 LO Chn 8 LO
VT1501A

Direct Input
SCP

VT1532A
Current

Output SCP

 +

 -

Chn 8 HI

C1 100mFR2 10 kW

Current Limit

Load

R1 2 kW CR1

{
 /* Main program local variable declarations */
 char *algorithm; /* Algorithm string */
 int alg_num; /* Algorithm number being loaded */
 char string[333]; /* Holds error information */
 int32 error; /* Holds error number */

 INST_STARTUP(); /* Initialize the C-SCPI routines */

 /* Open the E1415 device session with error checking */
 INST_OPEN(e1415, E1415_ADDR); /* Open the E1415 */
 if (! e1415) { /* Did it open? */

(void) fprintf(stderr, “Failed to open the E1415 at address %s\n”,
 E1415_ADDR);

(void) fprintf(stderr, “C-SCPI open error was %d\n”, cscpi_open_error);
exit(1);

 }
 /* Check for startup errors */
 INST_QUERY(e1415,"syst:err?\n", “%d,%S”, &error, string);
 if (error) {
 (void) printf(“syst:err %d,%s\n”, error, string);
 exit(1);
 }

 /* Start from a known instrument */
 INST_CLEAR(e1415); /* Selected device clear */
 INST_SEND(e1415, “*RST;*CLS\n”);

 /* Setup SCP functions */
 INST_SEND(e1415, “sens:func:volt (@116)\n”); /* Analog in volts */
 INST_SEND(e1415, “sour:func:cond (@141)\n”); /* Digital output */

 /* Configure Trigger Subsystem and Data Format */

 INST_SEND(e1415, “trig:sour timer;:trig:timer .001\n”);
 INST_SEND(e1415, “samp:timer 10e-6\n”); /* default */
 INST_SEND(e1415, “form real,32\n”);

 /* Download algorithm with in-line code */
 INST_SEND(e1415,"alg:def ‘alg1’,’PIDB(I116,O100,O141.B0)’\n");

 /* Preset Algorithm variables */
 INST_SEND(e1415,"alg:scal ‘alg1’,’Setpoint’,%f\n", 3.0);
 INST_SEND(e1415,"alg:scal ‘alg1’,’P_factor’,%f\n", 0.0001);
 INST_SEND(e1415,"alg:scal ‘alg1’,’I_factor’,%f\n", 0.00025);
 INST_SEND(e1415,"alg:upd\n");

 /* Initiate Trigger System - start scanning and running algorithms */
 INST_SEND(e1415,"init\n");

 /* Alter run-time variables and Retrieve Data */
 while(1) {

float32 setpoint = 0, process_info[4];
int i;

/* type in -100 to exit */
printf(“Enter desired setpoint: ”);
scanf(“%f”,&setpoint);
if (setpoint == -100.00) break;

 INST_SEND(e1415,"alg:scal ‘alg1’,’Setpoint’,%f\n", setpoint);
 INST_SEND(e1415,"alg:upd\n");

for (i = 0; i < 10 ; i++) { /* read CVT 10 times */
 /* ALG1 has elements 10-13 in CVT */

INST_QUERY(e1415, “data:cvt? (@10:13)”,"%f",&process_info);

90 Programming the VT1415A for PID Control Chapter 3

printf(“Process variable: %f, %f, %f, %f\n”,process_info[0],
process_info[1],process_info[2],process_info[3]);

}

 }

}

PID Algorithm Tuning

Tuning control loops is an extensive subject in itself. A proper discussion of
loop tuning must be undertaken within the context of process and control
loop theory. With this in mind, reading a book that covers the subject well is
also recommended: Fundamentals Of Process Control Theory, by Paul W.
Murrill, Instrument Society of America, Research Triangle Park, NC, 1981,
Second Edition 1991, ISBN 1-55617-297-4.

 The VT1415A Algorithmic Closed Loop Controller provides tuning
assistance in the form of the following loop control and monitoring features:

· Manual control mode

· Direct manipulation of variable values in both PIDA and PIDB

· PIDB operating values available from CVT

· PIDB History Mode puts continuous sequence of operating values into
FIFO

Using the Status System

The VT1415A’s Status System allows a single register (the Status Byte) to
be polled quickly to see if any internal condition requires attention.
Figure 3-11 shows that the three Status Groups (Operation Status,
Questionable Data, and the Standard Event Groups) and the Output Queue
all send summary information to the Status Byte. By this method, the Status
Byte can report many more events than its eight bits would otherwise allow.
Figure 3-12 shows the Status System in detail.

Chapter 3 Programming the VT1415A for PID Control 91

92 Programming the VT1415A for PID Control Chapter 3

Questionable Data Group

Operation Status Group

Standard Event Group

Group Summary Bits

Status Byte

Output
Queue

Read with
*STB

Figure 3-11: Simplified Status System Diagram

Chapter 3 Programming the VT1415A for PID Control 93

Figure 3-12: VT1415A Status System

STATus:OPERation:CONDition? (reads register)

L
o
g
ic

a
l O

R

*STB? *SRE
<mask_value>

QUE - Questionable Data
MAV - Message Available
ESB - Standard Event
RQS - Request Service
OPR - Operation Status

STANDARD EVENT GROUP

OPERATION STATUS GROUP

STATus:OPERation:ENABle (sets mask)

STATus:QUEStionable:ENABle (sets mask)

Output
Queue
Not
Empty

L
o
g
ic

a
l O

R

Lost Calibration

Trigger Too Fast

FIFO Overflowed

Over-voltage

VME Memory Overflow

Setup Changed

QUESTIONABLE DATA GROUP

STATUS BYTE GROUP

Operation Complete

Request Control

Query Error

Device Dependent Error

Execution Error

Command Error

User Request

Power-On

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0

1

2

3

4

5

6

7

*ESR? *ESE <mask_value>
*ESE?

0

1

2

QUE

MAV

ESB

RQS

OPR

(SRQ)

Summary Enable
(real-time) (1=enable)

 Event Enable
(latched) (1=enable)

L
o
g
ic

a
l O

R

STATus:OPERation:EVENt? (reads/clears

STATus:QUEStionable:CONDition? (reads register)

L
o
g
ic

a
l O

R

Calibrating

Measuring

Scan Complete

SCP Trigger

FIFO Half Full

Algorithm Interrupt

Summary Bit

Summary Bit

Summary Bit

Summary Bit

STATus:QUEStionable:EVENt? (reads/clears register)

STATus:QUEStionable:NTR and STATus:QUEStionable:PTR (set filters)

STATus:OPERation:NTR and STATus:QUEStionable:PTR (set filters)

 Condition
(real time)

Event
(latched

Filter Enable
(1=enable

 Condition
(real time)

Event
(latched

Filter Enable
(1=enable

Status Bit Descriptions

Questionable Data Group

Bit Bit Value Event Name Description

8 256 Lost Calibration At *RST or Power-on, Control Processor has found a checksum error in the
Calibration Constants. Read error(s) with SYST:ERR? command and
re-calibrate areas that lost constants.

9 512 Trigger Too Fast Scan not complete when another trigger event received.

10 1024 FIFO Overflowed Attempt to store more than 65,024 values in FIFO.

11 2048 Over-voltage
(Detected on Input)

If the input protection jumper has not been cut, the input relays have been
opened and *RST is required to reset the module. Over-voltage will also
generate an error.

12 4096 VME Memory
Overflow

The number of values taken exceeds VME memory space.

13 8192 Setup Changed Channel Calibration in doubt because SCP setup may have changed since last
*CAL? or CAL:SETup command. (*RST always sets this bit.)

Operation Status Group

Bit Bit Value Event Name Description

0 1 Calibrating Set by CAL:TARE and CAL:SETup. Cleared by CAL:TARE? and CAL:SETup?.
Set while *CAL? executing, then cleared.

4 16 Measuring Set when instrument INITiated. Cleared when instrument returns to Trigger Idle
State.

8 256 Scan Complete Set when each pass through a Scan List is completed

9 512 SCP Trigger Reserved for future SCPs

10 1024 FIFO Half Full FIFO contains at least 32,768 values

11 2048 Algorithm Interrupt The interrupt() function was called in an executing algorithm

Standard Event Group

Bit Bit Value Event Name Description

0 1 Operation Complete *OPC command executed and instrument has completed all pending operations.

1 2 Request Control Not used by VT1415A

2 4 Query Error Attempting to read empty output queue or output data lost.

3 8 Device Dependent Error A device dependent error occurred. See Appendix B.

4 16 Execution Error Parameter out of range or instrument cannot execute a proper command because
it would conflict with another instrument setting.

5 32 Command Error Unrecognized command or improper parameter count or type.

6 64 User Request Not used by VT1415A

7 128 Power-On Power has been applied to the instrument

Enabling Events
to be Reported in

the Status Byte

There are two sets of registers that individual status conditions must pass
through before that condition can be recorded in a group’s Event Register.
These are the Transition Filter Registers and the Enable registers. They
provide selectivity in recording and reporting module status conditions.

Configuring the
Transition Filters

Figure 3-12 shows that the Condition Register outputs are routed to the
input of the Negative Transition and Positive Transition Filter Registers.
For space reasons, they are shown together but are controlled by individual
SCPI commands. Here is the truth table for the Transition Filter Registers:

94 Programming the VT1415A for PID Control Chapter 3

Condition Reg Bit PTRansition Reg Bit NTRansition Reg Bit Event Reg Input

0®1 0 0 0

1®0 0 0 0

0®1 1 0 1

1®0 1 0 0

0®1 0 1 0

1®0 0 1 1

0®1 1 1 1

1®0 1 1 1

The Power-on default condition is: All Positive Transition Filter Register
bits set to one and all Negative Transition Filter Register bits set to 0. This
applies to both the Operation and Questionable Data Groups.

An Example Using the Operation Group

Suppose it is necessary to have the module report via the Status System
after executing a complicated *CAL? command. The “Cal i brat ing” bit (bit 0)
in the Op er a tion Con di tion Reg is ter goes to 1 when *CAL? is ex e cut ing and
re turns to 0 when *CAL? is com plete. In or der to re cord only the neg a tive
tran si tion of this bit in the STAT:OPER:EVEN register, send:

STAT:OPER:PTR 32766 All ones in Pos Trans Filter
register except bit 0=0

STAT:OPER:NTR 1 All zeros in Neg Trans Filter
register except bit 0=1

Now when *CAL? completes and Operation Condition Register bit zero goes
from 1 to 0, Operation Event Register bit zero will become a 1.

Configuring the
Enable Registers

Note that in Figure 3-12, each Status Group has an Enable Register. These
control whether or not the occurrence of an individual status condition will
be reported by the group’s summary bit in the Status Byte.

Questionable Data Group Examples

For only the “FIFO Overflowed” condition to be reported by the QUE bit
(bit 3) of the Status Byte, execute:

STAT:QUES:ENAB 1024 1024=decimal value for bit 10

For the “FIFO Overflowed” and “Setup Changed” conditions to be reported,
execute:

STAT:QUES:ENAB 9216 9216=decimal sum of values for
bits 10 and 13

Operation Status Group Examples

For only the “FIFO Half Full” condition to be reported by the OPR bit
(bit 7) of the Status Byte, execute:

STAT:OPER:ENAB 1024 1024=decimal value for bit 10

Chapter 3 Programming the VT1415A for PID Control 95

For only the “FIFO Half Full” and “Scan Complete” conditions to be
reported, execute:

STAT:OPER:ENAB 1280 1280=decimal sum of values for
bits 10 and 8

Standard Event Group Examples

For the “Query Error,” “Execution Error,” and “Command Error”
conditions to be reported by the ESB bit (bit 5) of the Status Byte, execute:

*ESE 52 52=decimal sum of values for bits
2, 4, and 5

Reading the
Status Byte

To check if any enabled events have occurred in the status system, first read
the Status Byte using the *STB? command. If the Status Byte is all zeros,
there is no summary information being sent from any of the status groups. If
the Status Byte is other than zero, one or more enabled events have
occurred. Interpret the Status Byte bit values and take further action as
follows:

Bit 3 (QUE)
bit value 810

Read the Questionable Data Group’s Event Register
using the STAT:QUES:EVENT? com mand. This will
re turn bit val ues for events which have oc curred in
this group. Af ter read ing, the Event Reg is ter is
cleared.

Note that bits in this group indicate error conditions.
If bit 8, 9, or 10 is set, error messages will be found
in the Error Queue. If bit 7 is set, error messages will
be in the error queue following the next *RST or
cy cling of power. Use the SYST:ERR? com mand to
read the er ror(s).

Bit 4 (MAV)
bit value 1610

There is a message available in the Output Queue.
Execute the appropriate query command.

Bit 5 (ESB)
bit value 3210

Read the Standard Event Group’s Event Register
using the *ESR? com mand. This will re turn bit val ues
for events which have oc curred in this group. Af ter
read ing, this sta tus reg is ter is cleared.

Note that bits 2 through 5 in this group indicate error
conditions. If any of these bits are set, error messages
will be found in the Error Queue. Use the SYST:ERR?
com mand to read these.

Bit 7 (OPR)
bit value 12810

Read the Operation Status Group’s Event Register
using the STAT:OPER:EVENT? com mand. This will
re turn bit val ues for events which have oc curred in
this group. Af ter read ing, the Event Reg is ter is
cleared.

96 Programming the VT1415A for PID Control Chapter 3

Clearing the Enable
Registers

To clear the Enable Registers execute:

STAT:PRESET for Operation Status and
Questionable Data Groups

*ESE 0 for the Standard Event Group

*SRE 0 for the Status Byte Group

The Status Byte
Group’s Enable

Register

The Enable Register for the Status Byte Group has a special purpose. Notice
in Figure 3-12 how the Status Byte Summary bit wraps back around to the
Status Byte. The summary bit sets the RQS (request service) bit in the
Status Byte. Using this Summary bit (and those from the other status
groups) the Status Byte can be polled and the RQS bit checked to determine
if there are any status conditions which need attention. In this way the RQS
bit is like the GPIB’s SRQ (Service Request) line. The difference is that,
while executing a GPIB serial poll (SPOLL) releases the SRQ line,
executing the *STB? com mand does not clear the RQS bit in the Sta tus Byte.
The Event Reg is ter must be read of the group whose sum mary bit is caus ing
the RQS.

Reading Status
Groups Directly

Status groups can be directly polled for instrument status rather than via
polling the Status Byte for summary information.

Reading Event Registers The Questionable Data, Operation Status, and Standard Event Groups all
have Event Registers. These Registers log the occurrence of even temporary
status conditions. When read, these registers return the sum of the decimal
values for the condition bits set, then are cleared to make them ready to log
further events. The commands to read these Event Registers are:

STAT:QUES:EVENT? Questionable Data Group Event
Register

STAT:OPER:EVENT? Operation Status Group Event
Register

*ESR? Standard Event Group Event
Register

Clearing Event Registers To clear the Event Registers without reading them execute:

*CLS clears all group’s Event Registers

Reading Condition Registers The Questionable Data and Operation Status Groups each have a Condition
Register. The Condition Register reflects the group’s status condition in
“real-time.” These registers are not latched so transient events may be
missed when the register is read. The commands to read these registers are:

STAT:QUES:COND? Questionable Data Group
Condition Register

STAT:OPER:COND? Operation Status Group Condition
Register

Chapter 3 Programming the VT1415A for PID Control 97

VT1415A Background Operation

The VT1415A inherently runs its algorithms and calibrations in the
background mode with no interaction required from the driver. All
resources needed to run the measurements are controlled by the on-board
Control Processor (DSP).

The driver is required to setup the type of measurement to be run, modify
algorithm variables, and to unload data from the card after it appears in the
CVT or FIFO. Once the INIT[:IMM] com mand is given, the VT1415A is
ini ti ated and all func tions of the trig ger sys tem and al go rithm ex e cu tion are
con trolled by its on-board con trol pro ces sor. The driver re turns to wait ing
for user com mands. No in ter rupts are re quired for the VT1415A to
com plete its measurement.

While the module is running algorithms, the driver can be queried for its
status and data can be read from the FIFO and CVT. The ABORT command
may be given to force continuous execution to complete. Any changes to
the measurement setup will not be allowed until the TRIG:COUNT is reached
or an ABORT com mand is given. Of course, any com mands or que ries can
be given to other in stru ments while the VT1415A is run ning al go rithms.

Updating the Status System and VXIbus Interrupts

The driver needs to update the status system’s information whenever the
status of the VT1415A changes. This update is always done when the status
system is accessed or when CAL i brate, INITiate, or ABORt com mands are
ex e cuted. Most of the bits in the OPER and QUES reg is ters rep re sent
con di tions which can change while the VT1415A is mea sur ing (ini ti ated).
In many circumstances, it is suf fi cient to have the sta tus sys tem bits up dated
the next time the sta tus sys tem is ac cessed or the INIT or ABORt com mands
are given. When it is de sired to have the sta tus sys tem bits up dated closer in
time to when the con di tion changes on the VT1415A, the VT1415A
interrupts can be used.

The VT1415A can send VXI interrupts upon the following conditions:

· Trigger too Fast condition is detected. Trigger comes prior to trigger
system being ready to receive trigger.

· FIFO overflowed. In either FIFO mode, data was received after the
FIFO was full.

· Over-voltage detection on input. If the input protection jumper has not
been cut, the input relays have all been opened and an *RST is re quired
to re set the VT1415A.

· Scan complete. The VT1415A has finished a scan list.

· SCP trigger. A trigger was received from an SCP.

· FIFO half full. The FIFO contains at least 32,768 values.

· Measurement complete. The trigger system exited the “Wait-For-Arm.”
This clears the Measuring bit in the OPER register.

· Algorithm executes an “interrupt()” statement.

98 Programming the VT1415A for PID Control Chapter 3

These VT1415A interrupts are not always enabled since, under some
circumstances, this could be detrimental to system operation. For example,
the Scan Complete, SCP triggers, FIFO half full, and Measurement
complete interrupts could come repetitively, at rates that would cause the
operating system to be swamped processing interrupts. These conditions are
dependent upon the user’s overall system design, therefore the driver allows
the user to decide which, if any, interrupts will be enabled.

The way the user controls which interrupts will be enabled is via the *OPC,
STATUS:OPER/QUES:ENABLE, and STAT:PRESET com mands.

Each of the interrupting conditions listed above has a corresponding bit in
the QUES or OPER reg is ters. If that bit is en abled via the
STA Tus:OPER/QUES:EN ABle com mand to be a part of the group sum mary
bit, it will also en able the VT1415A in ter rupt for that con di tion. If that bit
is not en abled, the cor re spond ing in ter rupt will be disabled.

Sending STAT:PRESET will dis able all the in ter rupts from the VT1415A.

Sending the *OPC com mand will en able the mea sure ment com plete
in ter rupt. Once this in ter rupt is re ceived and the OPC con di tion sent to the
sta tus sys tem, this in ter rupt will be dis abled if it was not pre vi ously en abled
via the STATUS:OPER/QUES:ENABLE command.

The above description is always true for a downloaded driver. In the
C-SCPI driver, however, the interrupts will only be enabled if cscpi_overlap
mode is ON when the enable command is given. If cscpi_overlap is OFF,
the user is indicating they do not want interrupts to be enabled. Any
subsequent changes to cscpi_overlap will not change which interrupts are
enabled. Only sending *OPC or STAT:OPER/QUES:ENAB with cscpi_over lap
ON will en able in ter rupts.

In addition, the user can enable or disable all interrupts via the SICL calls,
iintron() and iintroff().

Creating and Loading Custom EU Conversion Tables

The VT1415A provides for loading custom EU conversion tables. This
allows for the on-board conversion of transducers not otherwise supported
by the VT1415A.

Standard EU Operation The EU conversion tables built into the VT1415A are stored in a “library”
in the module’s non-volatile Flash Memory. When a specific channel is
linked to a standard EU conversion using the [SENSe:]FUNC:… com mand,
the mod ule cop ies that ta ble from the li brary to a seg ment of RAM al lo cated
to the spec i fied chan nel. When a sin gle EU con ver sion is spec i fied for
mul ti ple chan nels, mul ti ple cop ies of that con ver sion ta ble are put in RAM,
one copy into each chan nel’s Ta ble RAM Seg ment. The con ver sion
ta ble-per-chan nel ar range ment al lows higher speed scan ning since the ta ble
is al ready loaded and ready to use when the channel is scanned.

Chapter 3 Programming the VT1415A for PID Control 99

Custom EU Operation Custom EU conversion tables are loaded directly into a channel’s Table
RAM Segment using the DIAG:CUST:LIN and DIAG:CUST:PIEC com mands.
The DIAG:CUST:... com mands can spec ify mul ti ple chan nels. To “link”
cus tom con ver sions to their tables, ex e cute the [SENSe:]FUNC:CUST
<range>,(@<ch_list>) com mand. Un like stan dard EU con ver sions, the
cus tom EU con ver sions are al ready linked to their chan nels (ta bles loaded)
be fore the [SENSe:]FUNC:CUST command is executed, but the com mand
al lows the A/D range for these channels to be specified.

NOTE The *RST com mand clears all chan nel Ta ble RAM seg ments. Cus tom EU
con ver sion ta bles must be re-loaded us ing the DIAG:CUST:... com mands.

Custom EU Tables The VT1415A uses two types of EU conversion tables: linear and
piecewise. The linear table describes the transducer’s response slope and
offset (y=mx+b). The piecewise conversion table gets its name because it is
actually an approximation of the transducer’s response curve in the form of
512 linear segments whose end-points fall on the curve. Data points that fall
between the end-points are linearly interpolated. The built-in EU
conversions for thermistors, thermocouples, and RTDs use this type of
table.

Custom Thermocouple EU
Conversions

The VT1415A can measure temperature using custom characterized
thermocouple wire of types E, J, K, N, R, S, and T. The custom EU table
generated for the individual batch of thermocouple wire is loaded to the
appropriate channels using the DIAG:CUST:PIEC com mand. Since
ther mo cou ple EU con ver sion re quires a “ref er ence junc tion com pen sa tion”
of the raw ther mo cou ple volt age, the cus tom EU ta ble is linked to the
chan nel(s) us ing the com mand [SENSe:]FUNC tion:CUS Tom:TCouple
<type>[,<range>], (@<ch_list>).

The <type> parameter specifies the type of thermocouple wire so that the
correct built-in table will be used for reference junction compensation.
Reference junction compensation is based on the reference junction
temperature at the time the custom channel is measured. For more
information, see “Thermocouple Reference Temperature Compensation” on
page 64.

Custom Reference
Temperature EU

Conversions

The VT1415A can measure reference junction temperatures using custom
characterized RTDs and thermistors. The custom EU table generated for the
individually characterized transducer is loaded to the appropriate channel(s)
using the DIAG:CUST:PIEC com mand. Since the EU con ver sion from this
cus tom EU ta ble is to be con sid ered the “ref er ence junc tion tem per a ture,”
the chan nel is linked to this EU ta ble us ing the com mand
[SENSe:]FUNC tion:CUS Tom:REF er ence [<range>,](@<ch_list>).

This command uses the custom EU conversion to generate the reference
junction temperature as explained in the “Thermocouple Reference
Temperature Compensation” section on page 64.

100 Programming the VT1415A for PID Control Chapter 3

Creating Conversion Tables Contact a VXI Technology System Engineer for more information on
Custom Engineering Unit Conversion for specific applications.

Loading Custom EU Tables There is a specific location in the VT1415A’s memory for each channel’s
EU Conversion table. When standard EU conversions are specified, the
VT1415A loads these locations with EU conversion tables copied from its
non-volatile FLASH Memory. For Custom EU conversions, these table
values must be loaded using either of two SCPI commands.

Loading Tables for Linear Conversions

The DI AG nos tic:CUS Tom:LIN ear <ta ble_range>,<ta ble_block>, (@<ch_list>)
com mand down loads a cus tom lin ear En gi neer ing Unit Con ver sion ta ble to
the VT1415A for each chan nel specified.

· The <table_block> parameter is a block of 8 bytes that define 4, 16-bit
values. SCPI requires that <table_block> include the definite length
block data header. C-SCPI adds the header automatically.

· The <table_range> parameter specifies the range of input voltage that
the table covers (from -<table_range> to +<table_range>). The value
specified must be within 5% of: 0.015625 | 0.03125 | 0.0625 | 0.125 |
0.25 | 0.5 | 1 | 2 | 4 | 8 | 16 | 32 | 64.

· The <ch_list> parameter specifies which channels will have this custom
EU table loaded.

Usage Example

The program puts table constants into array <table_block>:

DIAG:CUST:PIEC table_block,1,(@132:163) send table for channels 32-63 to
VT1415A

SENS:FUNC:CUST:PIEC 1,1,(@132:163) link custom EU with channels
32-63 and set the 1 V A/D range

INITiate then TRIGger module

Loading Tables for Non Linear Conversions

The DI AG nos tic:CUS Tom:PIECewise <ta ble_range>,<ta ble_block>,
(@<ch_list>) com mand down loads a cus tom piecewise En gi neer ing Unit
Con ver sion ta ble to the VT1415A for each chan nel specified.

· The <table_block> parameter is a block of 1,024 bytes that define 512
16-bit values. SCPI requires that <table_block> include the definite
length block data header. C-SCPI adds the header automatically.

· The <table_range> parameter specifies the range of input voltage that
the table covers (from -<table_range> to +<table_range>). The value
specified must be within 5% of: 0.015625 | 0.03125 | 0.0625 | 0.125 |
0.25 | 0.5 | 1 | 2 | 4 | 8 | 16 | 32 | 64.

· The <ch_list> parameter specifies which channels will have this custom
EU table loaded.

Chapter 3 Programming the VT1415A for PID Control 101

Usage Example

The program puts table constants into array <table_block>.

DIAG:CUST:PIEC table_block,1,(@124:131) send table for chs 24-31 to
VT1415A

SENS:FUNC:CUST:PIEC 1,1,(@124:131) link custom EU with chs 24-31 and
set the 1 V A/D range

INITiate then TRIGger module

Summary The following points describe the capabilities of custom EU conversion:

· A given channel has only one active EU conversion table assigned to it.
Changing tables requires loading it with a DIAG:CUST:… com mand.

· The limit on the number of different custom EU tables that can be
loaded in a VT1415A is the same as the number of channels.

· Custom tables can provide the same level of accuracy as the built-in
tables. In fact, the built-in resistance function uses a linear conversion
table and the built-in temperature functions use the piecewise
conversion table.

Compensating for System Offsets

System Wiring Offsets The VT1415A can compensate for offsets in a system’s field wiring. Apply
shorts to channels at the Unit-Under-Test (UUT) end of the field wiring and
then execute the CAL:TARE (@<ch_list>) command. The instrument will
measure the voltage at each channel in <ch_list> and save those values in
RAM as channel Tare constants.

Important Note for

Thermocouples

· CAL:TARE can not be used on field wir ing that is made up of
ther mo cou ple wire. The volt age that a ther mo cou ple wire pair gen er ates
cannot be re moved by in tro duc ing a short any where be tween its
junc tion and its con nec tion to an iso ther mal panel (ei ther the
VT1415A’s Ter mi nal Mod ule or a re mote iso ther mal ref er ence block).
Ther mal volt age is gen er ated along the en tire length of a ther mo cou ple
pair where there is any tem per a ture gra di ent along that length. To
CAL:TARE ther mo cou ple wire this way would in tro duce an un wanted
off set in the volt age/tem per a ture re la tion ship for that ther mo cou ple. If a
ther mo cou ple wire pair is in ad ver tently “CAL:TARE'd,” see “Re set ting
CAL:TARE” on page 103.

· CAL:TARE should be used to com pen sate wir ing off sets (cop per wire,
not ther mo cou ple wire) be tween the VT1415A and a re mote
ther mo cou ple ref er ence block. Dis con nect the thermocouples and
in tro duce cop per short ing wires be tween each chan nel’s HI and LO,
then ex e cute CAL:TARE for these channels.

102 Programming the VT1415A for PID Control Chapter 3

Residual Sensor Offsets To remove residual sensor offsets in an unstrained strain gage bridge,
execute the CAL:TARE com mand on those chan nels. The mod ule will then
mea sure the off sets and, as in the wir ing case above, re move these off sets
from fu ture mea sure ments. In the strain gage case, this “bal ances the
bridge” so all mea sure ments have the ini tial un strained off set re moved to
al low the most ac cu rate high speed mea sure ments possible.

Operation After CAL:TARE <ch_list> mea sures and stores the off set volt ages, it then
per forms the equiv a lent of a *CAL? op er a tion. This op er a tion uses the Tare
con stants to set a DAC which will re move each chan nel off set as “seen” by
the mod ule’s A/D converter.

The absolute voltage level that CAL:TARE can re move is de pend ent on the
A/D range. CAL:TARE will choose the low est range that can han dle the
ex ist ing off set volt age. The range that CAL:TARE chooses will be come the
low est us able range (range floor) for that chan nel. For any chan nel that has
been “CAL:TARE'd,” Autorange will not go be low that range floor and
se lect ing a man ual range be low the range floor will re turn an Over load
value (see ta ble on page 200).

As an example, assume that the system wiring to channel 0 generates a
+0.1 volt offset with 0 volts (a short) applied at the UUT. Before CAL:TARE,
the mod ule would re turn a read ing of 0.1 volt for chan nel 0. Af ter CAL:TARE
(@100), the mod ule will re turn a read ing of 0 volts with a short ap plied at
the UUT and the sys tem wir ing off set will be re moved from all
mea sure ments of the sig nal to chan nel 0. Think of the sig nal ap plied to the
in stru ment’s chan nel in put as the gross sig nal value. CAL:TARE re moves the
tare por tion leav ing only the net signal value.

Because of settling times, especially on filtered channels, CAL:TARE can
take a num ber of min utes to ex e cute.

The tare calibration constants created during CAL:TARE are stored in and are
us able from the in stru ment’s RAM. To store the Tare con stants in
non-vol a tile Flash Memory, ex e cute the CAL:STORE TARE com mand.

NOTE The VT1415A’s Flash Memory has a finite lifetime of approximately
10,000 write cycles (unlimited read cycles). While executing CAL:STOR
once every day would not exceed the lifetime of the Flash Memory for
approximately 27 years, an application that stored constants many times
each day would unnecessarily shorten the Flash Memory’s lifetime.

Resetting CAL:TARE To “undo” the CAL:TARE op er a tion, ex e cute CAL:TARE:RE Set then
*CAL?/CAL:SET. If cur rent Tare cal i bra tion con stants have been stored in
Flash Mem ory, ex e cute CAL:TARE:RESET, then CAL:STORE TARE.

Chapter 3 Programming the VT1415A for PID Control 103

Special
Considerations

Here are some things to keep in mind when using CAL:TARE.

Maximum Tare Capability The tare value that can be compensated for is dependent on the instrument
range and SCP channel gain settings. The following table lists these limits

Maximum CAL:TARE Offsets

A/D range
±V F.Scale

Offset V
Gain x1

Offset V
Gain x8

Offset V
Gain x16

Offset V
Gain x64

16
4
1

0.25
0.0625

3.2213
0.82101
0.23061
0.07581
0.03792

0.40104
0.10101
0.02721
0.00786
0.00312

0.20009
0.05007
0.01317
0.00349
0.00112

0.04970
0.01220
0.00297
0.00055

N/A

Changing Gains or Filters To change a channel’s SCP setup after a CAL:TARE op er a tion, a *CAL?
op er a tion must be per formed to gen er ate new DAC con stants and re set the
“range floor” for the stored Tare value. The tare ca pa bil ity of the range/gain
setup must also be considered that is going to be used. For instance, if the
ac tual off set pres ent is 0.6 volts and was “Tared” for a 4 volt range/Gain x1
setup, mov ing to a 1 volt range/Gain x1 setup will re turn Over load val ues
for that chan nel since the 1 volt range is be low the range floor as set by
CAL:TARE. See ta ble on page 200 for more on val ues re turned for Over load
read ings.

Unexpected Channel
Offsets or Overloads

This can occur when the VT1415A’s Flash Memory contains CAL:TARE
off set con stants that are no lon ger ap pro pri ate for its cur rent ap pli ca tion.
Ex e cute CAL:TARE:RESET then *CAL? to re set the tare con stants in RAM.
Mea sure the af fected chan nels again. If the prob lems go away, the tare
con stants in Flash mem ory can now be reset by ex e cut ing CAL:STORE TARE.

Detecting Open Transducers

Most of the VT1415A’s analog input SCPs provide a method to detect open
transducers. When Open Transducer Detect (OTD) is enabled, the SCP
injects a small current into the HIGH and LOW input of each channel. The
polarity of the current pulls the HIGH inputs toward +17 volts and the LOW
inputs towards -17 volts. If a transducer is open, measuring that channel will
return an over-voltage reading. OTD is available on a per SCP basis. All
eight channels of an SCP are enabled or disabled together. See Figure 3-13
for a simplified schematic diagram of the OTD circuit.

104 Programming the VT1415A for PID Control Chapter 3

NOTES 1) When OTD is enabled, the inputs have up to 0.2 µA injected into them. If
this current will adversely affect the measurement, but checking for open
transducers is still desired, enable OTD, run the algorithms, check analog
input variables for measurement values that indicate an open transducer,
then disable OTD, and run the algorithms without it. The VT1415A’s
accuracy specifications apply only when OTD is off.

2) When a channel’s SCP filtering is enabled, allow 15 seconds after
turning on OTD for the filters capacitors to charge before checking for open
transducers.

To enable or disable Open Transducer Detection, use the
DI AG nos tic:OTDetect <en able>, (@<ch_list>) com mand.

· The <enable> parameter can specify ON or OFF

· An SCP is addressed when the <ch_list> parameter specifies a channel
number contained on the SCP. The first channel on each SCP is:
0, 8, 16, 24, 32, 40, 48, and 56

To enable Open Transducer Detection on all channels on SCPs 1 and 3:

DIAG:OTD ON, (@100,116) 0 is on SCP 1 and 16 is on SCP3

To disable Open Transducer Detection on all channels on SCPs 1 and 3:

DIAG:OTD OFF, (@100,116)

Chapter 3 Programming the VT1415A for PID Control 105

Figure 3-13: Simplified Open Transducer Detect Circuit

More On Auto Ranging

There are rare circumstances where an input signal can be difficult for the
VT1419A to auto range correctly. The module completes the range
selection based on the input signal about 6 µs before the actual
measurement is made on that channel. If during that period the signal
becomes greater than the selected range can handle, the module will return
an overflow reading (±INFinity).

The only solution to this problem is to use manual range on channels that
display this behavior.

Settling Characteristics

Some sequences of input signals, as determined by their order of appearance
in a scan list, can be a challenge to measure accurately. This section is
intended to help determine if a system presents any of these problems and
how best to eliminate them or reduce their effect.

Background While the VT1415 can auto-range, measure, and convert a reading to
engineering units as fast as once every 10 µs, measuring a high-level signal
followed by a very-low level signal may require some extra settling time.
As seen from the point of view of the VT1415A’s Analog-to-Digital
converter and its Range Amplifier, this situation is the most difficult to
measure. For example, look at two consecutive channels. The first
measures a power supply at 15.5 volts, the next measures a thermocouple
temperature. First, the input to the Range Amplifier is at 15.5 volts (near its
maximum) with any stray capacitances charged accordingly, then it
immediately is switched to a thermocouple channel and down-ranged to its
0.0625 volt range. On this range, the resolution is now 1.91 µV per Least
Significant Bit (LSB). Because of this sensitivity, the time to discharge
these stray capacitances may have to be considered.

Thus far in the discussion, it has been assumed that the low-level channel
measured after a high-level channel has presented a low impedance path to
discharge the A/D’s stray capacitances (path was the thermocouple wire).
The combination of a resistance measurement through a VT1501A Direct
Input SCP presents a much higher impedance path. A very common
measurement like this would be the temperature of a thermistor. If measured
through a Direct Input SCP, the source impedance of the measurement is
essentially the value of the thermistor (the output impedance of the current
source is in the gigaohm region). Even though this is a higher level
measurement than the previous example, the settling time can be even
longer due to the slower discharge of the stray capacitances. The simple
answer here is to always use an SCP that presents a low impedance buffered
output to the VT1415A’s Range Amp and A/D. The VT1503A/08A/09A/
10A/12A and 14A through 17A SCPs all provide this capability.

106 Programming the VT1415A for PID Control Chapter 3

Checking for
Problems

The method used to quickly determine if any of the channels in a system
need more settling time is to simply apply some settling time to every
channel. Use this procedure:

1. First run the system to make a record of its current measurement
performance.

2. Then use the SAMPle:TIMer command to add a significant settling
delay to every measurement in the scan list. Take care that the sample
time multiplied by the number of channels in the scan list doesn’t
exceed the time between triggers.

3. Now run the system and look primarily for low level channel
measurements (like thermocouples) with dc values that change
somewhat. If channels are found that respond to this increase in
sample period, it may also be noticed that these channels return
slightly quieter measurements as well. The extra sample period
reduces or removes the affected channels coupling to the value of the
channel measured just before it.

4. If some improvement is seen, increase the sample period again and
perform another test. When the sample period is increased and no
improvement is seen, the maximum settling delay that any single
channel requires has been found.

5. If the quality of the measurements does not respond to this increase
in sample period, then inadequate settling time is not likely to be
causing measurement problems.

Fixing the Problem If the system scans fast enough with the increased sample period, the
problem is solved. The system is only running as fast as the slowest channel
allows, but, if it's fast enough, that’s OK. If, on the other hand, getting
quality readings has slowed the scan rate too much, there are two other
methods that can, either separately or in combination, have the system
making good measurements as fast as possible.

Use Amplifier SCPs Amplifier SCPs can remove the need to increase settling delays. How? Each
gain factor of 4 provided by the SCP amplifier allows the Range Amplifier
to be set one range higher and still provide the same measurement

resolution. Amplifier SCPs for the VT1415A are available with gains of
0.5, 8, 16, 64, and 512. Now, return to the earlier example of a difficult
measurement where one channel is measuring 15.5 volts on the 16 volt
range and the next a thermocouple on the 0.0625 range. If the thermocouple
channel is amplified through an SCP with a gain of 16, the Range Amplifier
can be set to the 1 volt range. On this range, the A/D resolution drops to
around 31 µV per LSB so the stray capacitances discharging after the
15.5 volt measurement are now only one sixteenth as significant and thus
reduce any required settling delay. Of course, for most thermocouple
measurements a gain of 64 can be used with the Range Amplifier set to the
4 volt range. At this setting, the A/D resolution for one LSB drops to about
122 µV and further reduces or removes any need for additional settling

Chapter 3 Programming the VT1415A for PID Control 107

delay. This improvement is accomplished without any reduction of the
overall measurement resolution.

NOTE Filter-amplifier SCPs can provide improvements in low-level signal
measurements that go beyond just settling delay reduction. Amplifying the
input signal at the SCP allows using less gain at the Range Amplifier
(higher range) for the same measurement resolution. Since the Range
Amplifier has to track signal level changes (from the multiplexer) at up to
100 kHz, its bandwidth must be much higher than the bandwidth of
individual filter-amplifier SCP channels. Using higher SCP gain along with
lower Range Amplifier gain can significantly increase normal-mode noise
rejection.

Adding Settling Delay for
Specific Channels

This method adds settling time only to individual problem measurements as
opposed to the SAM Ple:TIMer com mand that in tro duces ex tra time for all
an a log in put chan nels. If prob lems are seen on only a few chan nels, use the
SENS:CHAN:SETTLING <num_sam ples>,(@<ch_list>) com mand to add
ex tra set tling time for just these prob lem chan nels. What
SENS:CHAN:SETTLING does is in structs the VT1415A to re place sin gle
in stances of a chan nel in the Scan List with mul ti ple re peat in stances of the
channel specified in (@<ch_list>). The num ber of re peats is set by
<num_sam ples>.

Example:

Normal Scan List:
100, 101, 102, 103, 104

Scan List after SENS:CHAN:SETT 3,(@100,103)
100, 100, 100, 101, 102, 103, 103, 103, 104

When the algorithms are run, channels 0 and 3 will be sampled three times
and the final value from each will be sent to the Channel Input Buffer. This
provides extra settling time while channels 1, 2, and 4 are measured in a
single sample period and their values also sent to the Channel Input Buffer.

108 Programming the VT1415A for PID Control Chapter 3

Chapter 4

Creating and Running Custom Algorithms

Learning Hint This chapter builds upon the “VT1415A Programming Model” information
presented in Chapter 3. That information is common to PIDs and to custom
algorithms. Read that section before continuing on to this one.

About This Chapter

This chapter describes how to write custom algorithms that apply the
VT1415A’s measurement, calculation, and control resources. It describes
these resources and how they can be accessed with the VT1415A’s
Algorithm Language. This manual assumes that the user has some
programming experience already, ideally in the ‘C’ language, as the
VT1415A’s Algorithm Language is based on ‘C.’ See Chapter 5 for a
description of the Algorithm Language. The contents of this chapter are:

· Describing the VT1415A . page 110

· What is a Custom Algorithm . page 110

· Overview of the Algorithm Language page 110

· The Algorithm Execution Environment page 111

· Accessing the VT1415A’s Resources page 113
- Accessing I/O Channels . page 114
- Defining and Accessing Global Variables page 115
- Determining First Execution . page 115
- Initializing Variables . page 116
- Sending Data to the CVT and FIFO page 116
- Setting a VXIbus Interrupt . page 117
- Determining an Algorithms ID (ALG_NUM) page 117
- Calling User Defined Functions . page 118

· Operating Sequence . page 118

· Defining Custom Algorithms (ALG:DEF) page 121

· A Very Simple First Algorithm . page 124

· Modifying a Standard PID Algorithm page 125

· Algorithm to Algorithm Communication page 126
Communication Using Channel Identifiers page 126
Communication Using Global Variables page 127

· Non Control Algorithms . page 129
Data Acquisition Algorithm . page 129
Process Monitoring Algorithm . page 129

· Implementing Setpoint Profiles . page 130

Chapter 4 Creating and Running Custom Algorithms 109

Describing the VT1415A Closed Loop Controller

The VT1415A is a self contained data acquisition and control platform in a
single C-size VXIbus module. Once configured for operation and initiated
with its SCPI command set, the module is controlled by the algorithm(s) it
is executing. It is the algorithms that have exclusive access to acquired data
from input channels and it is the algorithms that generate values that control
the analog and digital output channels. It is the calculation and decision
making capability provided by its Algorithm Language that makes the
VT1415A a closed loop controller. By placing the control “computer” (the
algorithm) inside the data acquisition and control instrument, the data
acquisition, the control decision making, and the data output phases are as
tightly coupled as they can be. The time required for the system to respond
to changing input values is at most one execution of the control algorithm.
No data exchange to or from an external computer is required in this cycle.

What is a Custom Algorithm?

The only thing that separates the VT1415A’s standard PID algorithms from
custom algorithms is that the standard PIDs are “built-in.” That is, they are
in the VT1415A’s driver and the driver can automatically insert channel
references into the code as it is loading it. Otherwise, there is no difference,
in fact, the standard PIDs are written in the same Algorithm Language used
to create custom algorithms. The source code for PIDA, PIDB, as well a
third algorithm, “PIDC,” are supplied with the VT1415A which can be used
as the basis for custom PID algorithms.

Overview of the Algorithm Language

As mentioned in the Introduction, the VT1415A’s Algorithm Language is
based on the ANSI ‘C’ programming language. This section will present a
quick look at the Algorithm Language. The complete language reference is
provided in Chapter 5.

Arithmetic Operators: add +, subtract -, multiply *, divide /
NOTE: Also see “Calling User Defined Functions” on page 118.

Assignment Operator: =

Comparison Functions: less than <, less than or equal <=, greater than >,
greater than or equal >=, equal to ==, not equal to !=

Boolean Functions: and && or ||, not !

Variables: scalars of type static float and single dimensioned arrays
of type static float limited to 1,024 elements.

Constants:
32-bit decimal integer; Dddd... where D and d are decimal digits but D is

110 Creating and Running Custom Algorithms Chapter 4

not zero. No decimal point or exponent specified.
32-bit octal integer: 0oo... where 0 is a leading zero and o is an octal digit.
No decimal point or exponent specified.
32-bit hexadecimal integer: 0Xhhh... or 0xhhh... where h is a hex digit.
32-bit floating point: ddd., ddd.ddd, ddde±dd, dddE±dd,
ddd.dddedd or ddd.dddEdd where d is a decimal digit.

Flow Control: conditional construct if(){ } else { }

Intrinsic Functions:
Return minimum: min(<expr1>,<expr2>)
Return maximum: max(<expr1>,<expr2>)
User defined function: <user_name>(<expr>)
Write value to CVT element: writecvt(<expr>,<expr>)
Write value to FIFO buffer: writefifo(<expr>)
Write value to both CVT and FIFO: writeboth(<expr>,<expr>)

Example Language
Usage

Here are examples of some Algorithm Language elements assembled to
show them used in context. Later sections will explain any unfamiliar
elements seen here:

Example 1;
/*** get input from channel 8, calculate output, check limits, output to ch 16 & 17 ***/
static float output_max = .020; /* 20 mA max output */
static float output_min = .004; /* 4 mA min output */
static float input_val, output_val; /* intermediate I/O vars */

input val_ = I108; /* get value from input buffer channel 8*/
output_val = 12.5 * input_val; /* calculate desired output */
if (output_val > output_max) /* check output greater than limit */

output_val = output_max; /* if so, output max limit */
else if(output_val < output_min) /* check output less than limit */

output_val = output_min; /* if so, output min limit */
O116 = output_val / 2; /* split output_val between two SCP */
O117 = output_val / 2; /* channels to get up to 20 mA max */

Example 2;
/*** same function as example 1 above but shows a different approach ***/
static float max_output = .020; /* 20 mA max output */
static float min_output = .004; /* 4 mA min output */

/* following lines input, limit output between min and max_output and outputs . */
/* output is split to two current output channels wired in parallel to provide 20 mA */
O116 = max(min_output, min(max_output, (12.5 * I108) / 2));
O117 = max(min_output, min(max_output, (12.5 * I108) / 2));

The Algorithm Execution Environment

This section describes the execution environment that the VT1415A
provides for algorithms. Here, the relationship of an algorithm to the main()
function that calls it is described.

Chapter 4 Creating and Running Custom Algorithms 111

The Main Function All ‘C’ language programs consist of one or more functions. A ‘C’ program
must have a function called main(). In the VT1415A, the main() function
is usually generated automatically by the driver when the INIT command is
executed. The main() function executes each time the module is triggered
and controls execution of algorithm functions. See Figure 4-1 for a partial
listing of main().

How the
Algorithms Fit In

When the module is INITiated, a set of control variables and a function
calling sequence is created for all algorithms defined. The value of variable
“State _n” is set with the ALGorithm:STATe command and determines whether
the algorithm will be called. The value of “Ratio_n” is set with the
ALGorithm:SCAN:RATio command and determines how often the algorithm
will be called (relative to trigger events).

Since the function-calling interface to an algorithm is fixed in the main()
function, the “header” of an algorithm function is also pre-defined. This
means that, unlike standard ‘C’ language programming, an algorithm
program (a function) need not (must not) include the function declaration
header, opening brace “{” and closing brace “}.” Only the “body” of the
function is supplied; the VT1415A’s driver supplies the rest.

Think of the program space in the VT1415A in the form of a source file
with any global variables first, then the main() function followed by as
many algorithms as are defined. Of course, what is really contained in the
VT1415A’s algorithm memory are executable codes that have been
translated from the downloaded source code. While not an exact
representation of the algorithm execution environment, Figure 4-1 shows
the relationship between a normal ‘C’ program and two VT1415 algorithms.

112 Creating and Running Custom Algorithms Chapter 4

Accessing the VT1415A’s Resources

This section describes how an algorithm accesses hardware and software
resources provided by the VT1415A. The following is a list of these
resources:

· I/O channels.

· Global variables defined before an algorithm is defined.

· The constant ALG_NUM which the VT1415A makes available to an
algorithm. ALG_NUM = 1 for ALG1, 2 for ALG2, etc.

· User defined functions defined with the ALG:FUNC:DEF command.

· The Current Value Table (CVT) and the data FIFO buffer (FIFO) to
output algorithm data to the application program.

· VXIbus Interrupts.

Chapter 4 Creating and Running Custom Algorithms 113

Figure 4-1: Source Listing of Function main()

/* GLOBALS you define with ALG:DEF GLOBALS... go here */

/* global variable First_loop equals 1 until all algorithms called */
static float First_loop; /* global value set to 1 at each INIT */
/**************************** function main()
****************************/
/*The VT1415 driver
creates main() at INIT time. This example shows a main created
after 2 algorithms have been defined. */
main()

{
/********* declaration of variables local to main() ********/

static float State_1, Ratio_1, Count_1; /* created if alg1 defined
*/

static float State_2, Ratio_2, Count_2; /* created if alg2 defined
*/

/********* this section created if ALG1 is defined ********/

Count_1 = Count_1 - 1; /* Count_1 used for ALG:SCAN:RATIO
*/

if (Count_1 <= 0) { /* test for ratio met (<=0 means
execute)*/

Count_1 = Ratio_1; /* Count_1 = ALG:SCAN:RATIO setting
*/

if (State_1) alg1(); /* if ALG:STATE ALG1,ON, call alg1
*/

}

/********* this section created if ALG2 is defined ********/

Count_2 = Count_2 - 1; /* Count_2 used for ALG:SCAN:RATIO
*/

if (Count_2 <= 0) { /* test for ratio met (<=0 means
execute)*/

Count_2 = Ratio_2; /* Count_2 = ALG:SCAN:RATIO setting
*/

if (State_2) alg2(); /* if ALG:STATE ALG2,ON, call alg2
*/

}

First_loop = 0; /* reset First_loop after last alg has been called
*/
}
/* ************************ end function main() *************************/

Your algorithms go here

Begin algorithm “shells”
(built by VT1415A’s driver)

End main() function

Begin main() function
(built by VT1415A’s driver)

Global variables areaGlobal variables area

First_loop declared by
VT1415A’s driver

Accessing I/O
Channels

In the Algorithm Language, channels are referenced as pre-defined variable
identifiers. The general channel identifier syntax is “Iccc” for input channels
and “Occc” for output channels; where ccc is a channel number from 100
(channel 0) through 163 (channel 63). Like all VT1415A variables, channel
identifier variables always contain 32-bit floating point values even when
the channel is part of a digital I/O SCP. If the digital I/O SCP has 8-bit
channels (like the VT1533A), the channel’s identifiers (Occc and Iccc) can
take on the values 0 through 255. To access individual bit values, append
“.Bn” to the normal channel syntax, where n is the bit number (0 through 7).
If the Digital I/O SCP has single-bit channels (like the VT1534A), its
channel identifiers can only take on the values 0 and 1. Examples:

O100 = 1; assign value to output chan 0 on
VT1534A.

Inp_val = I108; from 8-bit channel on VT1533A
Inp_val will be 0 to 255.

Bit_4 = I109.B4; assign VT1533A chan 9 bit 4 to
variable Bit_4

Output Channels

Output channels can appear on either or both sides of an assignment
operator. They can appear anywhere other variables can appear. Examples:

O100 = 12.5; send value to output channel buffer
element 0

O108.B4 = ! O108.B4; compliment value found in output
channel buffer element 8, bit 4 each
time algorithm is executed.

writecvt(O116,350); send value of output channel 16 to
CVT element 350

Input Channels

Input channel identifiers can only appear on the right side of assignment
operators. It doesn’t make sense to output values to an input channel. Other
than that, they can appear anywhere other variables can appear. Examples:

dig_bit_value = I108.B0; retrieve value from Input Channel
Buffer element 8, bit 0

inp_value = I124; retrieve value from Input Channel
Buffer element 24

O156 = 4 * I124; retrieve value from Input Channel
Buffer element 24, multiply by 4 and
send result to Output Channel Buffer
element 56

writefifo(I124); send value of input channel 24 to
FIFO buffer

Defined Input and
Output Channels

An algorithm “references” channels. It can reference input or output
channels, but, in order for these channels to be available to an algorithm,
they must be “defined.” To be “defined,” an SCP must be installed and an
appropriate SOURce or SENSe:FUNC tion must ex plic itly (or im plic itly, in the
case of VT1531A & 32A SCPs) be tied to the chan nels. If an algorithm
ref er ences an in put chan nel iden ti fier that is not con fig ured as an in put

114 Creating and Running Custom Algorithms Chapter 4

chan nel or an out put chan nel iden ti fier that is not con fig ured as an out put
chan nel, the driver will gen er ate an er ror when the algorithm is de fined with
ALG:DEF.

Defining and
Accessing Global

Variables

Global variables are those declared outside of the main() function and any
algorithms (see Figure 4-1). A global variable can be read or changed by
any algorithm. To declare global variables, use the command:

ALG:DEF ‘GLOBALS’,’<source_code>’

where <source_code> is Algorithm Language source limited to constructs
for declaring variables. It must not contain executable statements.
Examples:

declare single variable without assignment;

ALG:DEF ‘GLOBALS’,’static float glob_scal_var;’

declare single variable with assignment;

ALG:DEF ‘GLOBALS’,’static float glob_scal_var = 22.53;’

declare one scalar variable and one array variable;

ALG:DEF ‘GLOBALS’,’static float glob_scal_var, glob_array_var[12];’

Access global variables within an algorithm like any other variable.

glob_scal_var = P_factor * I108

NOTES 1. All variables must be declared static float.
2. Array variables cannot be assigned a value when declared.
3. All variables declared within an algorithm are local to that algorithm.

If a variable is declared locally with the same identifier as an existing
global variable, the algorithm will only access the local variable.

Determining
First Execution

(First_loop)

The VT1415A always declares the global variable First_loop. First_loop is
set to 1 each time INIT is executed. After main() calls all enabled
algorithms, it sets First_loop to 0. By testing First_loop, an algorithm can
determine if it is being called for the first time since an INITiate command
was received. Example:

static float scalar_var;
static float array_var [4];

/* assign constants to variables on first pass only */
if (First_loop)
{

scalar_var = 22.3;
array_var[0] = 0;
array_var[1] = 0;
array_var[2] = 1.2;
array_var[3] = 4;

}

Chapter 4 Creating and Running Custom Algorithms 115

Initializing Variables Variable initialization can be performed during three distinct VT1415A
operations:

1. When algorithms are defined with the ALG:DEFINE com mand. A
dec la ra tion ini tial iza tion state ment is a com mand to the driver’s
trans la tor func tion and does n’t cre ate an ex e cut able state ment. The
value as signed dur ing al go rithm def i ni tion is not re-as signed when
the al go rithm is run with the INIT command. Example state ment:

static float my_variable = 22.95;/* tells translator to allocate space for this */
/* variable and initialize it to 22.95 */

2. Each time the algorithm executes. By placing an assignment
statement within the algorithm. This will be executed each time the
algorithm is executed. Example statement.

my_variable = 22.95; /* reset variable to 22.95 every pass */

3. When the algorithm first executes after an INIT command. By using
the global variable First_loop, the algorithm can distinguish the first
execution since an INIT command was sent. Example statement:

if(First_loop) my_variable = 22.95 /* reset variable only when INIT starts alg */

Sending Data to the
CVT and FIFO

The Current Value Table (CVT) and FIFO data buffer provides
communication from an algorithm to the application program (running in
the VXIbus controller).

Writing a CVT element

The CVT provides 502 addressable elements where algorithm values can be
stored. To send a value to a CVT element, execute the intrinsic Algorithm
Language statement writecvt(<expression>,<cvt_element>), where
<cvt_element> can take the value 10 through 511. Note that the default
PIDB algorithm will use certain CVT elements (see “History Mode” on
page 75). The following is an example algorithm statement:

writecvt(O124, 330); /* send output channel 24’s value to CVT element 330 */

Each time the algorithm writes a value to a CVT element, the previous value
in that element is overwritten.

Reading CVT elements

An application program reads one or more CVT elements by executing the
SCPI command [SENSe:]DATA:CVT? (@<element_list>), where
<element_list> specifies one or more individual elements and/or a range of
contiguous elements. The following example command will help to explain
the <element_list> syntax.

DATA:CVT? (@10,20,30:33,40:43,330) Return elements 10, 20, 30-33,
40-43, and element 330.

116 Creating and Running Custom Algorithms Chapter 4

Individual element numbers are isolated by commas. A contiguous range of
elements is specified by: <starting element>colon<ending element>.

Writing values to the FIFO

The FIFO, as the name implies is a First-In-First-Out buffer. It can buffer up
to 65,024 values. This capability allows an algorithm to send a continuous
stream of data values related in time by their position in the buffer. It can be
thought of as an electronic strip-chart recorder. Each value is sent to the
FIFO by executing the Algorithm Language intrinsic statement
writefifo(<expression>). The following in an example algorithm statement:

writecvt(O124); /* send output channel 24’s value to the FIFO */

Since the actual algorithm execution rate can be determined (see
“Programming the Trigger Timer” on page 80), the time relationship of
readings in the FIFO is very deterministic.

Reading values from the FIFO

For a discussion on reading values from the FIFO, see “Reading History
Mode Values from the FIFO” on page 84.

Writing values to the FIFO and CVT

The writeboth(<expression>,<cvt_element>) statement sends the value of
<expression> both to the FIFO and to a <cvt_element>. Reading these
values is done the same way as mentioned for writefifo() and writecvt().

Setting a VXIbus
Interrupt

The algorithm language provides the function interrupt() to force a VXIbus
interrupt. When interrupt() is executed in an algorithm, a VXIbus interrupt
line (selected by the the SCPI command DIAG:INTR[:LINe]) is asserted. The
following example algorithm code tests an input channel value and sets an
interrupt if it is higher or lower than set limits.

static float upper_limit = 1.2, lower_limit = 0.2;
if(I124 > upper_limit || I124 < lower_limit) interrupt();

Determining an
Algorithm’s Identity

(ALG_NUM)

When an algorithm is defined with the ALG:DEF ‘ALGn’,… command, the
VT1415A’s driver makes available to the algorithm the constant
ALG_NUM. ALG_NUM has the value n from “ALGn.” For instance, if an
algorithm is defined with <alg_name> equal to “ALG3", then ALG_NUM
within that algorithm would have the value 3.

What can be done with this value? The standard PID algorithm, PIDB, uses
ALG_NUM to determine which CVT elements it should use to store values.
Here’s a short example of the code used:

writecvt (inp_channel, (ALG_NUM * 10) + 0);
writecvt (Error, (ALG_NUM * 10) + 1);
writecvt (outp_channel, (ALG_NUM * 10) + 2);
writecvt (Status, (ALG_NUM * 10) + 3);

Chapter 4 Creating and Running Custom Algorithms 117

This code writes PID values into CVT elements 10 through 13 for ALG1,
CVT elements 20 through 23 for ALG2, CVT elements 30 through 33 for
ALG3, etc.

Using ALG_NUM allows identical code to be written that can take different
actions depending on the name it was given when defined.

Calling User
Defined Functions

Access to user defined functions is provided to avoid complex equation
calculation within an algorithm. Essentially, what is provided with the
VT1415A is a method to pre-compute user function values outside of
algorithm execution and place these values in tables, one for each user
function. Each function table element contains a slope and offset to
calculate an mx+b over the interval (x is the value the function is provided).
This allows the DSP to linearly interpolate the table for a given input value
and return the function’s value much faster than if a transcendental
function’s equation were arithmetically evaluated using a power series
expansion.

User functions are defined by downloading function table values with the
ALG:FUNC:DEF command and can take any name that is a valid ‘C’
identifier like ‘haversine,’ ‘sqr,’ ‘log10,’ etc. To find out how to generate
table values from function equation, see “Generating User Defined
Functions” in Appendix F. For details on the ALG:FUNC:DEF command, see
page 172 in the Command Reference.

User defined functions are global in scope. A user function defined with
ALG:FUNC:DEF is available to all defined algorithms. Up to 32 functions can
be defined in the VT1415A. Call the function using the syntax
<func_name>(<expression>). Example:

for user function pre-defined as square root with name ‘sqrt’

O108 = sqrt(I100); /* channel 8 outputs square root of input channel 0’s value */

NOTE A user function must be defined (ALG:FUNC:DEF) before any algorithm is
defined (ALG:DEF) that references it.

A C-SCPI program that shows the use of a user defined function is supplied
on the VXIplug&play Drivers and Product Manuals CD (tri_sine.cs). See
Appendix G for example program listings.

Operating Sequence

This section explains another important factor in an algorithm’s execution
environment. Figure 4-2 shows the same overall sequence of operations
seen in Chapter 3, but also includes a block diagram to show which parts of
the VT1415A are involved in each phase of the control sequence.

118 Creating and Running Custom Algorithms Chapter 4

Overall Sequence Here, the important things to note about this diagram are:

· All algorithm referenced input channel values are stored in the Channel
Input Buffer (Input Phase) BEFORE algorithms are executed during the
Calculate Phase.

· The execution of all defined algorithms (Calculate Phase) is complete
BEFORE output values from algorithms, stored in the Channel Output
Buffer, are used to update the output channel hardware during the
Output Phase.

In other words, algorithms don’t actually read inputs at the time they
reference input channels and they don’t send values to outputs at the time
they reference output channels. Algorithms read channel values from an
input buffer and write (and can read) output values to/from an output buffer.
Here are example algorithm statements to describe operation:

inp_val = I108; /* inp_val is assigned a value from input buffer element 8 */
O116 = 22.3; /* output buffer element 16 assigned the value 22.3 */
O125 = O124; /* output buffer [24] is read and assigned to output buffer [25] */

A Common Error to Avoid Since the "buffered input, algorithm execution, buffered output" sequence is
probably unfamiliar to many, a programming mistake associated with it is
easy to make. A common error is shown below and, it is hoped, that seeing
this error will prevent its occurrence.

O124.B0 = 1; /* digital output bit on VT1533A in SCP position 3 */
O124.B0 = 0;

Traditionally, the first of these two statements is expected to set output
channel 24, bit 0 to a digital 1, then, after the time it takes to execute the
second statement, the bit would return to a digital 0. Because both of these
statements are executed BEFORE any values are sent to the output
hardware, only the last statement has any effect. Even if these two
statements were in separate algorithms, the last one executed would
determine the output value. In this example, the bit would never change.
The same applies to analog outputs.

Algorithm
Execution Order

The buffered I/O sequence explained previously can be used
advantageously. Multiple algorithms can access the very same buffered
channel input value without having to pass the value in a parameter. Any
algorithm can read and used as its input the value that any other algorithm
has sent to the output buffer. In order for these features to be of use, the
order in which the algorithms will be executed must be known. When
algorithms are defined, they are given one of 32 pre-defined algorithm
names. These range from ‘ALG1’ to ALG32.’ The algorithms will execute
in order of its name. For instance, if ‘ALG5’ is defined, then ‘ALG2,’ then
‘ALG8,’ and finally ‘ALG1,’ when run, they will execute in the order
‘ALG1,’ ‘ALG2,’ ‘ALG5,’ and ‘ALG8.’ For more on input and output
value sharing, see “Algorithm to Algorithm Communication” on page 126.

Chapter 4 Creating and Running Custom Algorithms 119

120 Creating and Running Custom Algorithms Chapter 4

Figure 4-2: Algorithm Operating Sequence Diagram

L
o

c
a

l V
a

ria
b

le
s

L
o

c
a

l V
a

ria
b

le
s

L
o

c
a

l V
a

ria
b

le
s

L
o

c
a

l V
a

ria
b

le
s

m
a

in
()

m
a

in
()

m
a

in
()

m
a

in
()

D
ig

ita
l

I/O
S

C
P

s

A
n

a
lo

g
O

u
tp

u
t

S
C

P

A
n

a
lo

g
In

p
u

t
S

C
P

64 Channel Analog Multiplexer

A
n

a
lo

g
In

p
u

t
S

C
P

A
n

a
lo

g
In

p
u

t
S

C
P

A
 / D

E
U

C
o

n
v
e

rs
io

n

8 8

1
6 8

8

8 888

6
4

 C
h

a
n

n
e

l
S

c
a

n
 L

is
t

F
IF

O
/C

V
T

B
u

ffe
r

C
u

rre
n

t V
a

lu
e

 T
a

b
le

(e
le

m
e

n
ts

 1
0

 - 5
1

1
)

F
IF

O

(6
4

 K
 va

lu
e

s)

VXIbus

P
H

A
S

E
 4

O
U

T
P

U
T

P
H

A
S

E
 1

IN
P

U
T

D
ig

ita
l

I/O
S

C
P

s

T
rig

g
e

r
T

rig
g
e

r
T

R
IG

:T
IM

E
R

Input

Update

Output

Calculate

4
1

2
3

A
L

G
:O

U
T

P
:D

E
L

A
Y

In
p

u
t

C
h

a
n

n
e

l
B

u
ffe

r
(I1

0
0

 - I1
6

3
)

O
u

tp
u

t
C

h
a

n
n

e
l

B
u

ffe
r

(O
I1

0
0

 - O
1

6
3

)

P
H

A
S

E
 3

C
A

L
C

U
L

A
T

E

P
H

A
S

E
 3

C
A

L
C

U
L

A
T

E

A
lg

o
rith

m
C

o
d

e

m
a

in
() fu

n
c

tio
n

(d
rive

r g
e

n
e

ra
te

d
)

G
lo

b
a

l V
a

ria
b

le
s

U
p

d
a

te
 Q

u
e

u
e

F
o

r V
a

ria
b

le
s

 a
n

d
A

lg
o

rith
m

s

L
o

c
a

l a
n

d
 G

lo
b

a
l

Q
u

e
ry

P
H

A
S

E
 2

U
P

D
A

T
E

P
H

A
S

E
 2

U
P

D
A

T
E

L
o

c
a

l V
a

ria
b

le
s

 A
L

G
1

E
x

e
c

u
tio

n
 P

h
a

s
e

s

V
o

lta
g

e

R
e

s
is

ta
n

c
e

T
e

m
p

.

S
tra

in

S
ta

te

F
re

q
u

e
n

c
y

T
o

ta
liz

e

S
ta

te

P
u

ls
e

s

P
W

M

F
M

V
o

lta
g

e

C
u

rre
n

t

8

1
6

Defining Custom Algorithms (ALG:DEF)

This section discusses how to use the ALG:DEFINE command to define
custom algorithms. Later sections will discuss “what to define.”

ALG:DEFINE in the
Programming

Sequence

*RST erases all previously defined algorithms. All algorithms must be erased
before beginning to re-define them (except in the special case described in
“Changing an Algorithm While it’s Running” later in this section).

ALG:DEFINE’s
Three Data Formats

For custom algorithms, the ALG:DEFINE ‘<alg_name>’,’<source_code>’
command sends the algorithm’s source code to the VT1415A’s driver for translation
to executable code. The <source_code> parameter can be sent in one of three forms:

1. SCPI Quoted String: For short segments (single lines) of code,
enclose the code string within single (apostrophes) or double quotes.
Because of string length limitations within SCPI and some
programming platforms, it is recommended that the quoted string
length not exceed a single program line. Example:

ALG:DEF ‘ALG1’,’if(First_loop) O108=0; O108=O108+.01;’

2. SCPI Indefinite Length Block Program Data: This form terminates
the data transfer when it received an End Identifier with the last data
byte. Use this form only when it is certain that the controller platform
will include the End Identifier. If it is not included, the ALG:DEF
command will “swallow” whatever data follows the algorithm code.
The syntax for this parameter type is:

#0<data byte(s)><null byte with End Identifier>
 Example from “Quoted String” above:

ALG:DEF ‘ALG1’,#0O108=I100;Æ (where “Æ” is a null byte)

3. SCPI Definite Length Block Program Data: For longer code
segments (like complete custom algorithms) this parameter works
well because it specifies the exact length of the data block that will be
transferred. The syntax for this parameter type is:

#<non-zero digit><digit(s)><data byte(s)>

Where the value of <non-zero digit> is 1-9 and represents the number
of <digit(s)>. The value of <digit(s)> taken as a decimal integer
indicates the number of <data byte(s)> in the block. Example from
“Quoted String” above:

ALG:DEF ‘ALG1’,#211O108=I100;Æ (where “Æ” is a null byte)

Chapter 4 Creating and Running Custom Algorithms 121

NOTE For Block Program Data, the Algorithm Parser requires that the
<source_code> data end with a null (0) byte. The null byte must be
appended to the end of the block’s <data byte(s)>. For Definite Length
Block Data, the null byte must be accounted for in the byte count
<digit(s)>. If the null byte is not included within the block, the error
“Algorithm Block must contain termination ‘\0’” will be generated.

Indefinite Length Block Data Example

Retrieve algorithm source code from file and send to VT1415A in indefinite
length format using VISA instrument I/O libraries:

int byte_count, file_handle;
char source_buffer[8096], null = 0;
file_handle = open(“<filename>”, O_RDONLY + O_BINARY);
byte_count = read(file_handle, source_buffer, sizeof(source_buffer));
close(file_handle);
source_buffer[byte_count] = 0; /* null to terminate source buffer string */
viPrintf(e1415, “ALG:DEF ‘ALG8’,#0%s%c\n”, source_buffer, null);

Definite Length Block Data Example

Retrieve source code from text file, determine length of file, create a
Definite Length Block header and send algorithm to VT1415A using VISA
instrument I/O Libraries:

int byte_count, file_handle;
char header_string[12], source_buffer[8096], null = 0;
file_handle = open(“<filename>” O_RDONLY+O_BINARY);
byte_count = read(file_handle, source_buffer, sizeof(source_buffer));
close(file_handle);
source_buffer[byte_count] = 0; /* null to terminate source buffer string */
sprintf(header_string, “%d”, byte_count + 1); /* note byte_count+1for null byte */
sprintf(header_string, “%d%d”, strlen(header_string), byte_count);
viPrintf(e1415, “ALG:DEF ‘ALG4’,#%s%s%c\n”, header_string, source_buffer, null);

See the section “Running the Algorithm” later in this chapter for more on
loading algorithms from files.

Changing a
Running Algorithm

The VT1415A has a feature that allows a specified algorithm to be swapped
with another even while it is executing. This is useful if, for instance, it is
necessary to alter the function of an algorithm that is currently controlling a
process and it is undesirable to have this process uncontrolled. In this case,
when original algorithm is defined, enable it to be swapped.

Defining an Algorithm for
Swapping

The ALG:DEF com mand has an op tional pa ram e ter that is used to en able
al go rithm swap ping. The com mand’s gen eral form is:

ALG:DEF ‘<alg_name>’[,<swap_size>],’<source_code>’

122 Creating and Running Custom Algorithms Chapter 4

Note the parameter <swap_size>. It specifies the amount of memory that
will be allocated to algorithm <alg_name>. Make sure to allocate enough
space for the largest algorithm expected to be defined for <alg_name>. Here
is an example of defining an algorithm for swapping:

define ALG3 so it can be swapped with an algorithm as large as 1000 words

ALG:DEF ‘ALG3’,1000,#41698<1698char_alg_source>

NOTE The number of characters (bytes) in an algorithm’s <source_code>
parameter is not well related to the amount of memory space the algorithm
requires. Remember, this parameter contains the algorithm’s source code,
not the executable code it will be translated into by the ALG:DEF com mand.
The algorithm’s source might con tain ex ten sive com ments, none of which
will be in the ex e cut able al go rithm code af ter it is translated.

How Does it Work? The example algorithm definition above will be used for this discussion.
When a value for <swap_size> is specified at algorithm definition, the
VT1415A allocates two identical algorithm spaces for ALG3, each the size
specified by <swap_size> (in this example 1000 words). This is called a
“double buffer.” They will be arbitrarily called "space A" and "space B."
The algorithm is loaded into ALG3’s space A at first definition. Later, while
algorithms are running, “replace” ALG3 by again executing:

ALG:DEF ALG3,#42435<2435char_alg_source>

Notice that <swap_size> is not (must not be) included this time. This
ALG:DEF works like an Up date Re quest. The VT1415A trans lates and
down loads the new al go rithm into ALG3’s space B while the old ALG3 is
still run ning from space A. When the new al go rithm has been com pletely
loaded into space B and an ALG:UPDATE com mand has been sent, the
VT1415A sim ply switches to ex e cut ing ALG3’s new al go rithm from
space B at the next Up date Phase (see Fig ure 4-2). If yet an other ALG3
were sent, it would be loaded and ex e cuted from ALG3’s space A.

Determining an
Algorithm’s Size

In order to define an algorithm for swapping, it is necessary to know how
much algorithm memory to allocate for it or any of its replacements. This
information can be queried from the VT1415A. Use the following sequence:

1. Define the algorithm without swapping enabled. This will cause the
VT1415A to allocate only the memory actually required by the
algorithm.

2. Execute the ALG:SIZE? <alg_name> com mand to query the amount of
mem ory al lo cated. The min i mum amount of mem ory re quired for the
algorithm is now known.

3. Repeat 1 and 2 for each of the algorithms that can be swapped with
the original. From this, the minimum amount of memory required for
the largest is known.

Chapter 4 Creating and Running Custom Algorithms 123

4. Execute *RST to erase all al go rithms.

5. Re-define one of the algorithms with swapping enabled and specify
<swap_size> at least as large as the value from step 3 above (and
probably somewhat larger because as alternate algorithms declare
different variables, space is allocated for total of all variables
declared).

6. Swap each of the alternate algorithms for the one defined in step 5,
ending with the one to run now. Remember, the <swap_size>
parameter is not sent with these. If an “Algorithm too big” error is
not received, then the value for <swap_size> in step 5 was large
enough.

7. Define any other algorithms in the normal manner.

NOTES 1. Channels referenced by algorithms when they are defined are only
placed in the channel list before INIT. The chan nel list can not be
changed af ter INIT. If an al go rithm is re-defined (by swapping), after
INIT and it ref er ences chan nels not al ready in the chan nel list, it will
not be able to ac cess the newly ref er enced chan nels. No er ror
mes sage will be gen er ated. To make sure all re quired chan nels will
be in cluded in the chan nel list, de fine <alg_name> and re-de fine all
al go rithms that will re place <alg_name> by swap ping them be fore
INIT is sent. This in sures that all chan nels ref er enced in these
al go rithms will be avail able af ter INIT.

2. The driver only calculates overall execution time for algorithms
defined before INIT. This cal cu la tion is used to set the de fault out put
de lay (same as ex e cut ing ALG:OUTP:DELAY AUTO). If an al go rithm is
swapped af ter INIT that takes lon ger to ex e cute than the orig i nal, the
out put de lay will be have as if set by ALG:OUTP:DEL 0 rather than
AUTO (see ALG:OUTP:DEL com mand). Use the same pro ce dure from
note 1 to make sure the lon gest al go rithm ex e cu tion time is used to
set ALG:OUTP:DEL AUTO be fore INIT.

An example program file named “swap.cs” on the VXIplug&play Drivers
and Product Manuals CD shows how to swap algorithms while the module
is running. See Appendix G for program listings.

A Very Simple First Algorithm

This section will demonstrates how to create and download an algorithm
that simply sends the value of an input channel to a CVT element. It
includes an example application program that configures the VT1415A,
downloads (defines) the algorithm, starts, and then communicates with the
running algorithm.

124 Creating and Running Custom Algorithms Chapter 4

Writing the
Algorithm

The most convenient method of creating a custom algorithm is to use a text
editor or word processor to input the source code. The following algorithm
source code is on the examples disc in a file called “mxplusb.”

/* Example algorithm that calculates 4 Mx+B values upon
 * signal that sync == 1. M and B terms set by application
 * program.
 */
 static float M, B, x, sync;
 if (First_loop) sync = 0;
 if (sync == 1) {

writecvt(M*x+B, 10);
writecvt(-(M*x+B), 11);
writecvt((M*x+B)/2,12);
writecvt(2*(M*x+B),13);
sync = 2;

 }

Running the
Algorithm

A C-SCPI example program “file_alg.cs” shows how to retrieve the
algorithm source file “mxplusb” and use it to define and execute an
algorithm. When “file_alg.cs” has been compiled, type
file_alg mxplusb to run the example and load the algorithm. The
aforementioned files can be found on the VXIplug&play Drivers and
Product Manuals CD.

Modifying a Standard PID Algorithm

While the standard PID algorithms can provide excellent general closed
loop process control, there will be times when a process has specialized
requirements that are not addressed by the default form of the VT1415A’s
PID algorithms. This section shows how to copy and modify a standard PID
algorithm. Both of the VT1415A’s standard PID algorithms, PIDA and
PIDB, are also available as source files supplied with the VT1415A. Also
included is a source file for a PIDC algorithm. PIDC has more features than
PIDB but is not pre-defined in the VT1415A’s driver like PIDA and PIDB.
It is only available as a source file.

PIDA with Digital
On-Off Control

The VT1415A’s PID algorithms are written to supply control outputs
through analog output SCPs. While it would not be an error to specify a
digital channel as the PID control output, the PID algorithm as written
would not operate the digital channel as desired.

The value written to a digital output bit is evaluated as if it were a boolean
value. That is, if the value represents a boolean true, the digital output is set
to a binary 1. If the value represents a boolean false, the digital output is set
to a binary 0. The VT1415A’s Algorithm Language (like ‘C’) specifies that
a value of 0 is a boolean false (0), any other value is considered true (1).
With that in mind, the operation of a standard PIDA will be analyzed with a
digital output as its control output.

Chapter 4 Creating and Running Custom Algorithms 125

How the Standard PIDA
Operates

A PID is to control a bath temperature at 140 °C. With the Setpoint at 140
and the process variable (PV) reading 130, the value sent to the output is a
positive value which drives the digital output to 1 (heater on). When the
process value reading reaches 140 the “error term” would equal zero so the
value sent to the digital output would be 0 (heater off). Fine so far, but, as
the bath temperature coasts even minutely above the setpoint, a small
negative value will be sent to the digital output which represents a boolean
true value. At this point the output will again be 1 (heater on) and the bath
temperature will continue go up rather than down. This process is now out
of control!

Modifying the Standard PIDA This behavior is easy to fix. Simply modify the standard PIDA algorithm
source code (supplied with the VT1415A in the file PIDA.C) and then
define it as a custom algorithm. Use the following steps:

1. Load the source file for the standard PIDA algorithm into a text
editor.

2. Find the line of code near the end of PIDA that reads:

outchan = Error * P_factor + I_out + D_factor * (Error - Error_old)

and insert this line below it:

if (outchan <= 0) outchan = 0; /* all value not positive are now zero */

3. Going back to the beginning of the file, change all occurrences of
“inchan” to the input channel specifier of choice (e.g. I100).

4. As in step 3, change all occurrences of “outchan” to the digital output
channel/bit identifier of choice (e.g. O108.B0).

5. Now, save this algorithm source file as “ONOFFPID.C.”

Algorithm to Algorithm Communication

The ability for one algorithm to have access to values from another can be
very important, particularly in more complex control situations. One of the
important features of the VT1415A is that this communication can take
place entirely within the algorithms’ environment. The application program
is freed from having to retrieve values from one algorithm and then send
those values to another algorithm.

Communication
Using Channel

Identifiers

The value of all defined input and output channels can be read by any
algorithm. Here is an example of inter-algorithm channel communication.

Implementing Multivariable
Control

In this example, two PID algorithms each control part of a process and, due
to the process dynamics, are interactive. This situation can call for what is
known as a “decoupler.” The job of the decoupler is to correct for the
“coupling” between these two process controllers. Figure 4-3 shows the two
PID controllers and how the decoupler algorithm fits into the control loops.
As mentioned before, algorithm output statements don’t write to the output
SCP channels but are instead buffered in the Output Channel Buffer until

126 Creating and Running Custom Algorithms Chapter 4

the Output Phase occurs. This situation allows easy implementation of
decouplers because it allows an algorithm following the two PIDs to inspect
their output values and make adjustments to them before they are sent to
output channels. The decoupler algorithm’s Decoupl_factor1 and
Decouple_factor2 variables (assumes a simple interaction) are local and can
be independently set using ALG:SCALAR:

/* decoupler algorithm. (must follow the coupled algorithms in execution sequence) */
static float Decouple_factor1, Decouple_factor2;
O124 = O124 + Decouple_factor2 * O125;
O125 = O125 + Decouple_factor1 * O124;

Communication
Using Global

Variables

A more traditional method of inter-algorithm communication uses global
variables. Global variables are defined using the ALG:DEF com mand in the
form:
ALG:DEF ‘GLOBALS’,’<vari able_dec la ra tion_state ments>’

Example of global declaration

ALG:DEF ‘GLOBALS’,’static float cold_setpoint;’

Implementing Feed Forward
Control

In this example, two algorithms mix hot and cold water supplies in a ratio
that results in a tank being filled to a desired temperature. The temperature
of the make-up supplies is assumed to be constant. Figure 4-4 shows the
process diagram.

To set up the algorithms for this example:

1. Define the global variable cold_setpoint

ALG:DEF ‘GLOBALS’,’static float cold_setpoint;’

2. Define the following algorithm language code as ALG1, the ratio
station algorithm.

Chapter 4 Creating and Running Custom Algorithms 127

Figure 4-3: Algorithm Communication with Channels

PID Controller ALG1

PID Controller ALG2

+

+

+

Decoupl_factor2

Process Interaction

Decoupl_factor1

+

_

_

+

+

O125 O125

O124

Setpoint

Setpoint

ALG3
De-coupler

O124

static float hot_flow, cold_hot_ratio;
static float cold_temp = 55, hot_temp = 180, product_temp = 120;
hot_flow = I108; /* get flow rate of cold supply */
/* following line calculates cold to hot ratio from supply and product temps */
cold_hot_ratio = (hot_temp - product_temp) / (cold_temp - product_temp);
cold_setpoint = hot_flow * cold_hot_ratio; /* output flow setpoint for ALG2 */

3. Modify a PIDA algorithm so its setpoint variable is the global
variable cold_setpoint, its input channel is I109 and its output
channel is O116 and Define as ALG2, the cold supply flow
controller:

/* Modified PIDA Algorithm; comments stripped out, setpoint from global,
 inchan = I109, outchan = O116
*/
 /* the setpoint is not declared so it will be global */

 static float P_factor = 1;
 static float I_factor = 0;

 static float D_factor = 0;
 static float I_out;
 static float Error;
 static float Error_old;

 /* following line includes global setpoint var and hard coded input chan */
 Error = Cold_setpoint - I109;
 if (First_loop)
 {

I_out = Error * I_factor;
 Error_old = Error;
 }
 else /* not First trigger */
 {

I_out = Error * I_factor + I_out; /* output channel hard coded here */
 }
 O116 = Error * P_factor + I_out + D_factor * (Error - Error_old);
 Error_old = Error;

128 Creating and Running Custom Algorithms Chapter 4

FT

FT

RS

flow transmitter

ALG2
Flow Controller

ALG1
Ratio Station

flow transmitter

FC

 55°
Cold Supply

GLOBAL
cold_setpoint

I108

O116
I109

180°
Hot Supply

120°
Product

Figure 4-4: Inter-algorithm Communication with Globals

Non-Control Algorithms

Data Acquisition
Algorithm

The VT1415A’s Algorithm Language includes intrinsic functions to write
values to the CVT, the FIFO, or both. Using these functions, it is possible to
create algorithms that simply perform a data acquisition function. The
following example shows the acquisition of eight channels of analog input
from SCP position 0 and one channel (8 bits) of digital input from a
VT1533A in SCP position 2. The results of the acquisition are placed in the
CVT and FIFO.

/* Data acquisition to CVT and FIFO */
writeboth(I100, 330); /* channel 0 to FIFO and CVT element 330 */
writeboth(I101, 331); /* channel 1 to FIFO and CVT element 331 */
writeboth(I102, 332); /* channel 2 to FIFO and CVT element 332 */
writeboth(I103, 333); /* channel 3 to FIFO and CVT element 333 */
writeboth(I104, 334); /* channel 4 to FIFO and CVT element 334 */
writeboth(I105, 335); /* channel 5 to FIFO and CVT element 335 */
writeboth(I106, 336); /* channel 6 to FIFO and CVT element 336 */
writeboth(I107, 337); /* channel 7 to FIFO and CVT element 337 */
writeboth(I116, 338); /* channel 16 to FIFO and CVT element 338 */

Using SENS:DATA:FIFO:… and the SENS:DATA:CVT com mands, the
application pro gram can ac cess the data.

Process Monitoring
Algorithm

Another function the VT1415A performs well is monitoring input values
and testing them against pre-set limits. If an input value exceeds its limit,
the algorithm can be written to supply an indication of this condition by
changing a CVT value or even forcing a VXIbus interrupt. The following
example shows acquiring one analog input value from channel 0 and one
VT1533A digital channel from channel 16 and limit testing them.

/* Limit test inputs , send values to CVT and force interrupt when exceeded */
static float Exceeded;
static float Max_chan0, Min_chan0, Max_chan1, Min_chan1;
static float Max_chan2, Min_chan2, Max_chan3, Min_chan3;
static float Mask_chan16;
if (First_loop) Exceeded = 0; /* initialize Exceeded on each INIT */
writecvt(I100, 330); /* write analog value to CVT */
Exceeded = ((I100 > Max_chan0) || (I100 < Min_chan0)); /* limit test analog */
writecvt(I101, 331); /* write analog value to CVT */
Exceeded = Exceeded + ((I101 > Max_chan1) || (I101 < Min_chan1));
writecvt(I102, 332); /* write analog value to CVT */
Exceeded = Exceeded + ((I102 > Max_chan2) || (I102 < Min_chan2));
writecvt(I103, 333); /* write analog value to CVT */
Exceeded = Exceeded + ((I103 > Max_chan3) || (I103 < Min_chan3));
writecvt(I116, 334); /* write 8-bit value to CVT */
Exceeded = Exceeded + (I116 != Mask_chan16); /* limit test digital */
If (Exceeded) interrupt();

Chapter 4 Creating and Running Custom Algorithms 129

Implementing Setpoint Profiles

A setpoint profile is a sequence of set-points inputted to a control algorithm.
A normal setpoint is either static or modified by operator input to some
desired value where it will then become static again. A setpoint profile is
used to cycle a device under test through some operating range and the
setpoint remains for some period of time before changing. The automotive
industry uses setpoint profiles to test their engines and drive trains. That is,
each new setpoint is a simulation of an operator sequence that might
normally be encountered.

A setpoint profile can either be calculated for each interval or pre-calculated
and placed into an array. If calculated, the algorithm is given a starting
setpoint and an ending setpoint. A function based upon time then calculates
each new desired setpoint until traversing the range to the end point. Some
might refer to this technique as setpoint ramping.

Most setpoint profiles are usually pre-calculated by the application program
and downloaded into the instrument performing the sequencing. In that
case, an array affords the best alternative for several reasons:

· Arrays can hold up to 1,024 points.

· Arrays can be downloaded quickly while the algorithm is running.

· Time intervals can be tied to trigger events and each n trigger events can
simply access the next element in the array.

· Real-time calculations of setpoint profiles by the algorithm itself
complicates the algorithm.

· The application program has better control over time spacing and the
complexity and range of the data. For example, successive points in the
array could be the same value just to keep the setpoint at that position
for extra time periods.

The following is an example program that sequences data from an array to
an Analog Output. There are some unique features illustrated here that can
be used:

· The application program can download new profiles while the
application program is running. The algorithm will continue to
sequence through the array until it reaches the end of the array. At this
time, it will set its index back to 0 and toggle a Digital Output bit to
create an update channel condition on a Digital Input. Then, at the next
trigger event, the new array values will take effect before the algorithm
executes. As long as the new array is download into memory before the
index reaches 1,023, the switch to the new array elements will take
place. If the array is downloaded AFTER the index reaches 1,023, the
same setpoint profile will be executed until index reaches 1,023 again.

· The application program can monitor the index value with ALG:SCAL?
“alg1",”index" so it can keep track of where the profile sequence is
currently running. The interval can also be made shorter or longer by
changing the num_events variable.

130 Creating and Running Custom Algorithms Chapter 4

SOUR:FUNC:COND (@141) make Digital I/O channel 141 a
digital output. The default condition
for 140 is digital input.

define algorithm

ALG:DEF ‘alg1’,’

static float setpoints[1024], index, num_events, n;
if (First_loop) {

index = 0; /* array start point */
n = num_events; /* preset interval */

}
n = n - 1; /* count trigger events */
if (n <= 0) {

O100 = setpoints[index]; /* output new value */
index = index + 1; /* increment index */
if (index > 1023) { /* look for endpoint */

index = 0;
O140.B0 = !O140.B0; /* toggle update bit */

}
n = num_events; /* reset interval count */

}

ALG:SCAL “alg1",”num_events", 10 output change every 10 ms
ALG:ARRAY “alg1",”setpoints",<block_data> set first profile
ALG:UPD force change
TRIG:TIMER .001 trigger event at 1 ms
TRIG:SOUR TIMER trigger source timer
INIT start algorithm

Download new setpoint profile and new timer interval:

ALG:SCAL “alg1",”num_events", 20 output change every 20 ms
ALG:ARRAY “alg1",”setpoints",<block data> set first profile
ALG:UPD:CHAN “I140.B0" change takes place with change in bit

0 of O140.

This example program was configured using Digital Output and Digital
Inputs for the express reason that multiple VT1415A’s may be used in a
system. In this case, the VT1415A toggling the digital bit would be the
master for the other VT1415A’s in the system. They all would be
monitoring one of their digital input channels to signal a change in setpoint
profiles.

Chapter 4 Creating and Running Custom Algorithms 131

Notes

132 Creating and Running Custom Algorithms Chapter 4

Chap ter 5

Algorithm Language Reference

The VT1415A’s Algorithm Language is a limited version of the ‘C’
programming language. It is designed to provide the necessary control
constructs and algebraic operations to support standard PID as well as
custom control algorithms. There are no loop constructs, multi-dimensional
arrays, or transcendental functions. Further, an algorithm must be
completely contained within a single function subprogram ‘ALGn.’ The
algorithm cannot call another user-written function subprogram.

It is important to note that, while the VT1415A’s Algorithm Language has a
limited set of intrinsic arithmetic operators, it also provides the capability to
call special user defined functions “f(x).” An off-line program included
with the VT1415A converts the functions supplied into piece-wise linear
interpolated tables and gives them user defined names. The VT1415A can
extract function values from these tables in under 18 µs, regardless of the
function’s original complexity. This method provides faster algorithm
execution by moving the complex math operations off-board. See
Appendix F, “Generating User Defined Functions”

This section assumes that the user already programs in some language. If
the user is a ‘C’ language programmer, the reference section here, as well as
Chapter 4 “Customizing Algorithms,” is all that will likely be needed to
create an algorithm. If unfamiliar with the C programming language, study
the “Program Structure and Syntax” section before attempting to to write
custom algorithms.

· Language reference . page 133
- Standard Reserved Keywords . page 134
- Special VT1415A Reserved Keywords page 134
- Identifiers . page 134
- Special Identifiers for Channels . page 135
- Operators . page 135
- Intrinsic Functions and Statements . page 135
- Program Flow Control . page 136
- Data Types . page 136
- Data Structures . page 137
- Bitfield Access . page 138

· Language Syntax Summary . page 139

· Program Structure and Syntax . page 143

Language Reference

This section provides a summary of reserved keywords, operators, data
types, constructs, intrinsic functions, and statements.

Chap ter 5 Algorithm Language Reference 133

Standard Reserved
Keywords

The list of reserved keywords is the same as ANSI ‘C.’ Custom variables
cannot be created using these names. Note that the keywords that are shown
underlined and bold are the only ANSI ‘C’ keywords that are implemented
in the VT1415A.

auto double int struc

break else long switch

case enum register typeof

char extern return union

const float short unsigned

continue for signed void

default goto sizeof volatile

do if static while

NOTE While all of the ANSI ‘C’ keywords are reserved, only those keywords that
are shown in bold are actually implemented in the VT1415A.

Special VT1415A
Reserved Keywords

The VT1415A implements some additional reserved keywords. Variables
cannot be created using these names:

abs interrupt writeboth

Bn (n=0 through 9) max writecvt

Bnn (nn=10 through 15) min writefifo

Identifiers Identifiers (variable names) are significant to 31 characters. They can
include alpha, numeric, and the underscore character “_.” Names must
begin with an alpha character or the underscore character.

Al pha: a b c d e f g h i j k l m n o p q r s t u v w x y z

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Nu meric: 0 1 2 3 4 5 6 7 8 9

Other: _

NOTE Identifiers are case sensitive. The names "My_array" and "my_array"
reference different identifiers.

134 Algorithm Language Reference Chap ter 5

Special Identifiers
for Channels

Channel identifiers appear as variable identifiers within the algorithm and
have a fixed, reserved syntax. The identifiers I100 to I163 specify input
channel numbers. The “I” must be uppercase. They may only appear on the
right side of an assignment operator. The identifiers O100 to O163 specify
output channel numbers. The “O” must be uppercase. They can appear on
either or both sides of the assignment operator.

NOTE Trying to declare a variable with a channel identifier will generate an error.

Operators The VT1415A’s Algorithm Language supports the following operators:

Assignment Operator = (assignment) example: c = 1.2345

Arithmetic Operators + (addition) examples: c = a + b
- (subtraction) c = a - b
* (multiplication) c = a * b
/ (division) c = a / b

Unary Operators - (unary minus) c = a + (-b)
+ (unary plus) c = a + (+b)

Comparison Operators == (is equal to) examples: a == b
!= (is not equal to) a != b
< (is less than) a < b
> (is greater than) a > b
<= (is less than or equal to) a <= b
>= (is greater than or equal to) a >= b

Logical Operators || (or) examples: (a == b) || (a == c)
&& (and) (a == b) && (a == c)

Unary Logical Operator ! (not) example: !b

The result of a comparison operation is a boolean value. It is still a type
float, but its value is either 0 (zero) if false or 1 (one) if true. Any variable
can be tested with the if statement. A value of zero tests false; if any other

value, it tests true. For example:

/* if my_var is other than 0, in cre ment count_var */
 if(my_var) count_var=count_var+1;

Intrinsic Functions
and Statements

The following functions and statements are provided in the VT1415A’s
Algorithm Language:

Chap ter 5 Algorithm Language Reference 135

Functions:

abs(expression) return absolute value of expression
max(expression1,expression2) return largest of the two expressions
min(expression1,expression2) return smallest of the two expressions

Statements:

interrupt() sets VXI interrupt
writeboth(expression,cvt_loc) write expression result to FIFO

and CVT element specified.
writecvt(expression,cvt_loc) write expression result to CVT

element specified.
writefifo(expression) write expression result to FIFO.

Program Flow
Control

Program flow control is limited to the conditional execution construct using
if and else and return. Looping inside an algorithm function is not
supported. The only “loop” is provided by repeatedly triggering the
VT1415A. Each trigger event (either external or internal Trigger Timer)
executes the main() function which calls each defined and enabled
algorithm function. There is no goto statement.

Conditional Constructs The VT1415A Algorithm Language provides the if-else construct in the
following general form:

if (expression) statement1 else statement2
If expression evaluates to non-zero statement1 is executed. If expression
evaluates to zero, statement2 is executed. The else clause with its associated
statement2 is optional. Statement1 and/or statement2 can be compound
statement. That is { statement; statement; statement; ... }.

Exiting the Algorithm The return statement allows terminating algorithm execution before
reaching the end by returning control to the main() function. The return
statement can appear anywhere in an algorithm. It is not required to include
a return statement to end an algorithm. The translator treats the end of an
algorithm as an implied return.

Data Types The data type for variables is always static float. However, decimal
constant values without a decimal point or exponent character (“.”, “E” or
“e”), as well as Hex and Octal constants are treated as 32-bit integer values.
This treatment of constants is consistent with ANSI ‘C.’ To understand
what this can mean, it is necessary to understand that not all arithmetic
statements in an algorithm are actually performed within the VT1415A’s
DSP chip at algorithm run-time. Where expressions can be simplified, the
VT1415A’s translator (a function of the driver invoked by ALG:DEF)
performs the arithmetic operations before downloading the executable code
to the algorithm memory in the VT1415A. For example, look at the
statement:

a = 5 + 8;

136 Algorithm Language Reference Chap ter 5

When the VT1415A’s translator receives this statement, it simplifies it by
adding the two integer constants (5 and 8) and storing the sum of these as
the float constant 13. At algorithm run-time, the float constant 13 is
assigned to the variable “a.” No surprises so far. Now, analyze this
statement:

a = (3 / 4) * 12;

Again, the translator simplifies the expression by performing the integer
divide for 3/4. This results in the integer value 0 being multiplied by 12
which results in the float constant 0.0 being assigned to the variable “a” at
run-time. This is obviously not what was desired, but is exactly what the
algorithm instructed.

These subtle problems can be avoided by specifically including a decimal
point in decimal constants where an integer operation is not desired. For
example, if either of the constants in the division above were made a float
constant by including a decimal point, the translator would have promoted
the other constant to a float value and performed a float divide operation
resulting in the expected 0.75 * 12 or the value 8.0. So, the statement:

a = (3. / 4) * 12;

will result in the value float 8.0 being assigned to the variable “a.”

The Static Modifier All VT1415A variables, local or global, must be declared as static. An
example:

static float gain_var, in te ger_var, deriv_var; /* three vars de clared */

In ‘C’, local variables that are not declared as static lose their values once
the function completes. The value of a local static variable remains
unchanged between calls to an algorithm. Treating all variables this way
allows an algorithm to “remember” its previous state. The static variable is
local in scope, but otherwise behaves as a global variable. Also note that
variables may not be declared within a compound statement.

Data Structures The VT1415A Algorithm Language allows the following data structures:

· Simple variables of type float:
Declaration

static float simp_var, any_var;

Use
simp_var = 123.456;
any_var = -23.45;
Another_var = 1.23e-6;

Storage
Each simple variable requires four 16-bit words of memory.

Chap ter 5 Algorithm Language Reference 137

· Single-dimensioned arrays of type float with a maximum of 1,024
elements:
Declaration

static float array_var [3];

Use
array_var [0] = 0.1;
array_var [1] = 1.2;
array_var [2] = 2.34;
array_var [3] = 5;

Storage
Arrays are “double buffered.” This means that when an array
is declared, twice the space required for the array is
allocated, plus one more word as a buffer pointer. The
memory required is:

words of memory num elements= +(* _)8 1

This double buffered arrangement allows the ALG:ARRAY
command to download all elements of the array into the “B”
buffer while an algorithm is accessing values from the “A”
buffer. Then an ALG:UPDATE command will cause the
buffer pointer word to point to the newly loaded buffer
between algorithm executions.

Bitfield Access The VT1415A implements bitfield syntax that allows individual bit values
to be manipulated within a variable. This syntax is similar to what would be
done in ‘C’, but doesn’t require a structure declaration. Bitfield syntax is
supported only for the lower 16 bits (bits 0-15) of simple (scalar) variables
and channel identifiers.

Use
if(word_var.B0 || word_var.B3) /* if ei ther bit 0 or bit 3 true ... */

word_var.B15 = 1; /* set bit 15 */

NOTES 1. A bitfield structure does not have to be declared in order to use it. In
the Algorithm Language, the bitfield structure is assumed to be
applicable to any simple variable including channel identifiers.

2. Unlike ‘C’, the Algorithm Language allows for both bit access and
“whole” access to the same variable. Example:

static float my_word_var;
my_word_var = 255 /* set bits 0 through 7 */
my_word_var.B3 = 0 /* clear bit 3 */

138 Algorithm Language Reference Chap ter 5

Declaration Initialization Only simple variables (not array members) may be initialized in the
declaration statement:

static float my_var = 2;

NOTE! The initialization of the variable only occurs when the algorithm is first
defined with the ALG:DEF com mand. The first time the al go rithm is
ex e cuted (mod ule INITed and trig gered), the value will be as in i tial ized. But
when the mod ule is stopped (ABORT com mand) and then re-INI Ti ated, the
vari able will not be re-in i tial ized but will con tain the value last as signed
dur ing pro gram ex e cu tion. In or der to ini tial ize vari ables each time the
mod ule is re-IN I Tial ized, see “De ter min ing First Ex e cu tion” on page 115.

Global Variables To declare global variables, execute the SCPI command ALG:DEF
‘GLOBALS’,<pro gram_string>. The <pro gram_string> can con tain sim ple
vari able and ar ray vari able dec la ra tion/ini tial iza tion state ments. The string
must not con tain any ex e cut able source code.

Language Syntax Summary

This section documents the VT1415A’s Algorithm Language elements.

Identifier:

first character is A-Z, a-z or “_”, optionally followed by characters;
A-Z, a-z, 0-9 or “_.” Only the first 31 characters are significant. For
example: a, abc, a1, a12, a_12, now_is_the_time, gain1.

Decimal Constant:

first character is 0-9 or “.”(decimal point). Remaining characters if
present are 0-9, a “.”(one only), a single “E”or"e", optional “+” or
“-”, 0-9. For example: 0.32, 2, 123, 123.456, 1.23456e-2, 12.34E3.

NOTE Decimal constants without a decimal point character are treated by the
translator as 32-bit integer values. See Data Types on page 136.

Hexadecimal Constant:

first characters are 0x or 0X. Remaining characters are 0-9 and A-F
or a-f. No “.” allowed.

Octal Constant:

first character is 0. Remaining characters are 0-7. If “.”, “e” or “E”
is found, the number is assumed to be a Decimal Constant as above.

Chap ter 5 Algorithm Language Reference 139

Primary-Expression:

constant
(expression)
scalar-identifier
scalar-identifier.bitnumber
array-identifier[expression]
abs(expression)
max(expression,expression)
min(expression,expression)

Bit-Number:

Bn where n=0-9
Bnn where nn=10-15

Unary-Expression:

primary-expression
unary-operator unary-expression

Unary-Operator:

+
-
!

Multiplicative-Expression:

unary-expression
multiplicative-expression multiplicative-operator unary-expression

Multiplicative-Operator:

*
/

Additive-Expression:

multiplicative-expression
additive-expression additive-operator multiplicative-expression

Additive-Operator:

+
-

Relational-Expression:

additive-expression
relational-expression relational-operator additive-expression

140 Algorithm Language Reference Chap ter 5

Relational-Operator:

<
>
<=
>=

Equality-Expression:

relational-expression
equality-expression equality-operator relational-expression

Equality-Operator:

==
!=

Logical-AND-Expression:

equality-expression
logical-AND-expression && equality-expression

Expression:

logical-AND-expression
expression || logical-AND-expression

Declarator:

identifier
identifier [integer-constant-expression]
NOTE: Integer-constant expression in array identifier above must
not exceed 1,023.

Init-Declarator:

declarator
declarator = constant-expression
NOTES: 1. May not initialize array declarator.

2. Arrays limited to single dimension of 1024
maximum.

Init-Declarator-List:

init-declarator
init-declarator-list , init-declarator

Declaration:

static float init-declarator-list;

Chap ter 5 Algorithm Language Reference 141

Declarations:

declaration
declarations declaration

Intrinsic-Statement:

interrupt ()
writefifo (expression)
writecvt (expression , constant-expression)
writeboth(expression , constant-expression)
exit (expression)

Expression-Statement:

scalar-identifier = expression ;
scalar-identifier . bit-number = expression ;
array-identifier [integer-constant expression] = expression ;
intrinsic-statement ;

Selection-Statement:

if (expression) statement
if (expression) statement else statement

Compound-Statement:

{ statement-list }
{ }
NOTE: Variable declaration not allowed in compound statement.

Statement:

expression-statement
compound-statement
selection-statement

Statement-List:

statement
statement-list statement

Algorithm-Definition:

declarations statement-list
statement-list

142 Algorithm Language Reference Chap ter 5

Program Structure and Syntax

In this section, the portion of the ‘C’ programming language that is directly
applicable to the VT1415A’s Algorithm Language will be discussed. To do
this, ‘C’ Algorithm Language elements will be compared with equivalent
BASIC language elements.

Declaring Variables In BASIC, the DIM statement is typically used to name variables and
allocate space in memory for them. In the Algorithm Language, the variable
type and a list of variables is specified:

BASIC ‘C’
DIM a, var, ar ray(3) static float a, var, ar ray[3];

Here, three variables are declared. Two simple variables: a and var and a
single dimensioned array, array.

Comments:

· Note that the ‘C’ language statement must be terminated with the
semicolon “;”.

· Although all variables in the Algorithm Language are of type float,
they must be explicitly declared as such.

· All variables in an algorithm are static. This means that each time an
algorithm is executed, the variables “remember” their values from
the previous execution. The static modifier must appear in the
declaration.

· Array variables must have a single dimension. The array dimension
specifies the number of elements. The lower bound is always zero
(0) in the Algorithm Language. Therefore, the variable My_array
from above has three elements: My_array [0] through My_array[2].

Assigning Values BASIC and ‘C’ are the same here. Both languages use the symbol “=” to
assign a value to a simple variable or an element of an array. The value can
come from a constant, another variable, or an expression. Examples:

a = 12.345;

a = My_var;

a = My_ar ray[2];

a = (My_ar ray[1] + 6.2) / My_var;

NOTE In BASIC, the assignment symbol “=” is also used as the comparison
operator “is equal to.” For example; IF a=b THEN As is discussed later
in this chapter, ‘C’ uses a different symbol for this comparison.

Chap ter 5 Algorithm Language Reference 143

The Operations
Symbols

Many of the operation symbols are the same and are used the same way as
those in BASIC. However, there are differences and they can cause
programming errors until they are recognized.

The Arithmetic Operators The arithmetic operators available to the VT1415A are the same as those
equivalents in BASIC:
+ (addition) - (subtraction)
* (multiplication) / (division)

Unary Arithmetic Operator Again same as BASIC:
- (unary minus) Examples: a = b + (-c)

+ (unary plus) a = c + (+b)

The Comparison Operators Here there are some differences.
 BASIC ‘C’ Notes
 = (is equal to) == Different (hard to remember)
 <> or # (is not equal to) != Different but obvious
 > (is greater than) > Same
 < (is less than) > Same
 >= (is greater than or equal to) >= Same
 <= (is less than or equal to) <= Same

A common ‘C’ programming error for BASIC programmers is to
inadvertently use the assignment operator “=” instead of the comparison
operator “==” in an if statement. Fortunately, the VT1415A will flag this as
a Syntax Error when the algorithm is loaded.

The Logical Operators There are three operators. They are very different from those in BASIC.
BASIC Examples ‘C’ Examples
AND IF A=B AND B=C && if((a == b)&&(b == c))

OR IF A=B OR A=C || if((a == b) || (a == c))

NOT IF NOT B ! if (! b)

Conditional
Execution

The VT1415A Algorithm Language provides the if - else construct for
conditional execution. The following figure compares the elements of the
‘C’ if - else construct with the BASIC if - then - else - end if construct. The
general form of the if - else construct is:

if(expression) statement1 else statement2
where statement1 is executed if expression evaluates to non-zero (true) and
statement2 is executed if expression evaluates to zero (false). Statement1
and/or statement2 can be compound statements. That is, multiple simple
statements within curly braces. See Figure 5-1.

144 Algorithm Language Reference Chap ter 5

Note that in BASIC, the <boolean_expression> is delimited by the IF and
the THEN keywords. In ‘C’, the parentheses delimit the expression. In ‘C’ ,
the “)” is the implied THEN. In BASIC, the END IF keyword terminates a
multi-line IF. In ‘C’, the if is terminated at the end of the following
statement when no else clause is present or at the end of the statement
following the else clause. Figure 5-2 shows examples of these forms:

Chap ter 5 Algorithm Language Reference 145

Figure 5-2: Examples of 'C' and BASIC if Statements

if(a <= 0) c=abs(a);

if(a != 0)
c = b / a;

if((a != b) && (a != c))

{
a = a * b;
b = b + 1;
c = 0;

}

if((a == 5) || (b == -5))
{

c = abs(c);
c = 2 / c;

}
else
{
c = a * b;

}

IF A<=0 THEN C=ABS(A)

IF A<>0 THEN
C=B/A

END IF

IF A<>B AND A<>C THEN
A=A*B
B=B+1
C=0

END IF

IF A=5 OR B=-5 THEN
C=ABS(C)
C= 2/C

ELSE
C= A*B

END IF

ExamplesBASIC Syntax ‘C’ Syntax

Figure 5-1: The if Statement 'C' versus BASIC

Simplest form (used often)

Two-line form (not recommended; use
multiple line form instead)

Multiple line form (used often)

Multiple line form with else (used often)

Comments

if(boolean_expression) statement;

if(boolean_expression)
statement;

if(boolean_expression)

{
statement;
statement;
statement;

}

if(boolean_expression)
{

statement;
statement;

}
else
{

statement;
}

IF boolean_expression THEN statement

IF boolean_expression THEN
statement

END IF

IF boolean_expression THEN
statement
statement
statement

END IF

IF boolean_expression THEN
statement
statement

ELSE
statement

END IF

BASIC Syntax ‘C’ Syntax

Note that in ‘C’ “else” is part of the closest previous “if”statement. So the
example:
if(x) if(y) z = 1; else z = 2;

executes like: not like:
if(x){ if(x){

if(y){ if (y){
z = 1; z = 1;

} }
else{ }

z = 2; else{
} z = 2;

} }

Comment Lines Probably the most important element of programming is the comment. In
older BASIC interpreters the comment line began with “REM” and ended at
the end-of-line character(s) (probably carriage return then linefeed). Later
BASICs allowed comments to also begin with various “shorthand”
characters such as “!” or “’.” In all cases a comment ended when the
end-of-line is encountered. In ‘C’ and the Algorithm Language, comments
begin with the the two characters “/*” and continue until the two characters
“*/” are encountered. Examples:

/* this line is solely a com ment line */
if (a != b) c = d + 1; /* com ment within a code line */
/* This com ment is com posed of more than one line.

The com ment can be any num ber of lines long and
ter mi nates when the fol low ing two char ac ters ap pear

*/

About the only character combination that is not allowed within a comment
is “*/”, since this will terminate the comment.

Overall Program
Structure

The preceding discussion showed the differences between individual
statements in BASIC and ‘C.’ Shown here is the way the VT1415A’s
Algorithm Language elements are arranged into a program.

Here is a simple example algorithm that shows most of the elements
discussed so far.

/* Example Algorithm to show language elements in the context of a complete
custom algorithm.

Program variables:

user_flag Set this value with the SCPI command ALG:SCALAR.
user_value Set this value with the SCPI command ALG:SCALAR.

146 Algorithm Language Reference Chap ter 5

Program Function:

Algorithm returns user_flag in CVT element 330 and another value in CVT element 331
each time the algorithm is executed.
When user_flag = 0, returns zero in CVT 331.
When user_flag is positive, returns user_value * 2 in CVT 331
When user_flag is negative, returns user_value / 2 in CVT 331 and in FIFO

Use the SCPI command ALGorithm:SCALar followed by ALGorithm:UPDate to set
user_flag and user_value.

*/
static float user_flag; /* Declaration statements (end with ;) */
static float user_value;

writecvt (user_flag,330); /* Always write user_flag in CVT (statement ends with ;) */

if (user_flag) /* if statement (note no ;) */
{ /* brace opens compound statement */

if (user_flag > 0) writecvt (user_value * 2,331); /* one-line if statement (writecvt ends with ;) */
else /* else immediately follows complete if-statement construct */
{ /* open compound statement for else clause */

writecvt (user_value / 2,331); /* each simple statement ends in ; (even within compound) */
writefifo (user_value); /* these two statements could combine with writeboth () */

} /* close compound statement for else clause */
} /* close compound statement for first if */
else writecvt (0,331); /* else clause goes with first if statement. Note single line else */

Where To Go Next If one has already read Chapter 3 “Programming the VT1415A for PIDs”,
read Chapter 4 “Creating and Running Custom Algorithms.” It is very
important to read Chapter 3 first since almost all of the programming steps
for PIDs apply to programming the VT1415A to run custom algorithms.

Chap ter 5 Algorithm Language Reference 147

Notes

148 Algorithm Language Reference Chap ter 5

Chapter 6

 VT1415A Command Reference

Using This Chapter

This chapter describes the Standard Commands for Programmable Instruments
(SCPI) command set and the IEEE-488.2 Common Commands for the VT1415A.

· Overall Command Index . page 149
· Command Fundamentals . page 153
· SCPI Command Reference . page 159
· Common Command Reference . page 276
· Command Quick Reference. page 286

 Overall Command Index

SCPI Commands

ABORt . page 160

ALGorithm[:EXPLicit]:ARRay <alg_name>,<array_name>,<block_data> page 162

ALGorithm[:EXPLicit]:ARRay? <alg_name>,<array_name> . page 163

ALGorithm[:EXPLicit]:DEFine <alg_name>,[<swap_enable>,<size>,]<source_code> page 163

ALGorithm[:EXPLicit]:SCALar <alg_name>,<var_name>,<value> page 167

ALGorithm[:EXPLicit]:SCALar? <alg_name>,<var_name> . page 168

ALGorithm[:EXPLicit]:SCAN:RATio <alg_name>,<value> . page 168

ALGorithm[:EXPLicit]:SCAN:RATio? <alg_name> . page 169

ALGorithm[:EXPLicit]:SIZe? <alg_name> . page 169

ALGorithm[:EXPLicit][:STATe] <alg_name>,1 | 0 | ON | OFF . page 170

ALGorithm[:EXPLicit][:STATe]? <alg_name> . page 171

ALGorithm[:EXPLicit]:TIMe? <alg_name> . page 171

ALGorithm:FUNCtion:DEFine <func_name>,<range>,<offset>,<func_data> page 172

ALGorithm:OUTPut:DELay <delay> | AUTO . page 173

ALGorithm:OUTPut:DELay? . page 174

ALGorithm:UPDate[:IMMediate] . page 174

ALGorithm:UPDate:CHANnel (@<channel>) . page 175

ALGorithm:UPDate:WINDow <num_updates> . page 176

ALGorithm:UPDate:WINDow? . page 177

ARM[:IMMediate] . page 179

ARM:SOURce BUS | EXT | HOLD | IMM | SCP | TTLTrg<n> . page 179

ARM:SOURce? . page 180

CALibration:CONFigure:RESistance . page 182

CALibration:CONFigure:VOLTage <range> . page 183

CALibration:SETup . page 184

Chapter 6 VT1415A Command Reference 149

CALibration:SETup? . page 184

CALibration:STORe ADC | TARE . page 185

CALibration:TARE (@<ch_list>) . page 186

CALibration:TARE:RESet . page 187

CALibration:TARE? . page 188

CALibration:VALue:RESistance <ref_ohms> . page 188

CALibration:VALue:VOLTage <ref_volts> . page 189

CALibration:ZERO? . page 190

DIAGnostic:CALibration:SETup[:MODE] 0 | 1 . page 191

DIAGnostic:CALibration:SETup[:MODE]? . page 192

DIAGnostic:CALibration:TARE[:OTDetect][:MODE] 0 | 1 . page 192

DIAGnostic:CALibration:TARE[:OTDetect][:MODE]? . page 193

DIAGnostic:CHECksum? . page 193

DIAGnostic:CUStom:LINear <table_range>,<table_block>,(@<ch_list>) page 193

DIAGnostic:CUStom:PIECewise <table_range>,<table_block>,(@<ch_list>) page 194

DIAGnostic:CUSTom:REFerence:TEMPerature . page 195

DIAGnostic:IEEE 0 | 1 . page 195

DIAGnostic:IEEE? . page 196

DIAGnostic:INTerrupt[:LINe] <int_line> . page 196

DIAGnostic:INTerrupt[:LINe]? . page 196

DIAGnostic:OTDetect[:STATe] 1 | 0 | ON | OFF,(@<ch_list>) . page 198

DIAGnostic:OTDetect[:STATe]? (@<channel>) . page 198

DIAGnostic:QUERy:SCPREAD? <reg_addr> . page 199

DIAGnostic:VERSion? . page 199

FETCh? . page 200

FORMat[:DATA] <format>[,<size>] . page 199

FORMat[:DATA]? . page 201

INITiate[:IMMediate] . page 202

INPut:FILTer[:LPASs]:FREQuency <cutoff_freq>,(@<ch_list>) . page 203

INPut:FILTer[:LPASs]:FREQuency? (@<channel>) . page 204

INPut:FILTer[:LPASs][:STATe] 1 | 0 | ON | OFF,(@<ch_list>) . page 204

INPut:FILTer[:LPASs][:STATe]? (@<channel>) . page 205

INPut:GAIN <chan_gain>,(@<ch_list>) . page 205

INPut:GAIN? (@<channel>) . page 206

INPut:LOW <wvolt_type>,(@<ch_list>) . page 206

INPut:LOW? (@<channel>) . page 207

INPut:POLarity NORMal | INverted,(@<ch_list>) . page 207

INPut:POLarity? (@<channel>) . page 208

MEMory:VME:ADDRess <A24_address> . page 210

MEMory:VME:ADDRess? . page 210

MEMory:VME:SIZE <mem_size> . page 210

MEMory:VME:SIZE? . page 211

MEMory:VME:STATe 1 | 0 | ON | OFF . page 211

MEMory:VME:STATe? . page 212

150 VT1415A Command Reference Chapter 6

OUTPut:CURRent:AMPLitude <amplitude>,(@<ch_list>) . page 213

OUTPut:CURRent:AMPLitude? (@<channel>) . page 214

OUTPut:CURRent[:STATe] 1 | 0 | ON | OFF,(@<ch_list>) . page 215

OUTPut:CURRent[:STATe]? (@<channel>) . page 215

OUTPut:POLarity NORMal | INVerted,(@<ch_list>) . page 216

OUTPut:POLarity? (@<channel>) . page 216

OUTPut:SHUNt 1 | 0,(@<ch_list>) . page 216

OUTPut:SHUNt? (@<channel>) . page 217

OUTPut:TTLTrg:SOURce ALGorithm | FTRigger | SCPlugon | TRIGger page 217

OUTPut:TTLTrg:SOURce? . page 218

OUTPut:TTLTrg<n>[:STATe] 1 | 0 | ON | OFF . page 218

OUTPut:TTLTrg<n>[:STATe]? . page 219

OUTPut:TYPE PASSive | ACTive,(@<ch_list>) . page 219

OUTPut:TYPE? (@<channel>) . page 220

OUTPut:VOLTage:AMPLitude <amplitude>,(@<ch_list>) . page 220

OUTPut:VOLTage:AMPLitude? (@<channel>) . page 221

ROUTe:SEQuence:DEFine? AIN | AOUT | DIN | DOUT . page 222

ROUTe:SEQuence:POINts? AIN | AOUT | DIN | DOUT . page 223

SAMPle:TIMer <interval> . page 224

SAMPle:TIMer? . page 225

[SENSe:]CHANnel:SETTling <settle_time>,(@<ch_list>) . page 227

[SENSe:]CHANnel:SETTling? (@<channel>) . page 227

[SENSe:]DATA:CVTable? (@<element_list>) . page 228

[SENSe:]DATA:CVTable:RESet . page 229

[SENSe:]DATA:FIFO[:ALL]? . page 229

[SENSe:]DATA:FIFO:COUNT? . page 230

[SENSe:]DATA:FIFO:COUNT:HALF? . page 231

[SENSe:]DATA:FIFO:HALF? . page 231

[SENSe:]DATA:FIFO:MODE BLOCk | OVERwrite . page 232

[SENSe:]DATA:FIFO:MODE? . page 233

[SENSe:]DATA:FIFO:PART? <n_readings> . page 233

[SENSe:]DATA:FIFO:RESet . page 234

[SENSe:]FREQuency:APERture <gate_time>,(@<ch_list>) . page 234

[SENSe:]FREQuency:APERture? (@<channel>) . page 234

[SENSe:]FUNCtion:CONDition (@<ch_list>) . page 235

[SENSe:]FUNCtion:CUSTom [<range>,](@<ch_list>) . page 235

[SENSe:]FUNCtion:CUSTom:REFerence [<range>,](@<ch_list>) page 236

[SENSe:]FUNCtion:CUSTom:TCouple <type>,[<range>,](@<ch_list>) page 237

[SENSe:]FUNCtion:FREQuency (@<ch_list>) . page 238

[SENSe:]FUNCtion:RESistance <excite_current>,[<range>,] @<ch_list>) page 239

[SENSe:]FUNCtion:STRain:FBENding [<range>,](@<ch_list>) . page 240

[SENSe:]FUNCtion:STRain:FBPoisson [<range>,](@<ch_list>) . page 240

[SENSe:]FUNCtion:STRain:FPOisson [<range>,](@<ch_list>) . page 240

[SENSe:]FUNCtion:STRain:HBENding [<range>,](@<ch_list>) . page 240

[SENSe:]FUNCtion:STRain:HPOisson [<range>,](@<ch_list>) . page 240

[SENSe:]FUNCtion:STRain[:QUARter] [<range>,](@<ch_list>) . page 240

Chapter 6 VT1415A Command Reference 151

[SENSe:]FUNCtion:TEMPerature <sensor_type>,<sub_type>,[<range>,] (@<ch_list>) page 241

[SENSe:]FUNCtion:TOTalize (@<ch_list>) . page 243

[SENSe:]FUNCtion:VOLTage[:DC] [<range>,](@<ch_list>) . page 243

[SENSe:]REFerence <sensor_type>,[<sub_type>,][<range>,] (@<ch_list>) page 244

[SENSe:]REFerence:CHANnels (@<ref_channel>),(@<tc_channels>) page 246

[SENSe:]REFerence:TEMPerature <degrees_c> . page 246

[SENSe:]STRain:EXCitation <excite_v>,(@<ch_list>) . page 247

[SENSe:]STRain:EXCitation? (@<channel>) . page 247

[SENSe:]STRain:GFACtor <gage_factor>,(@<ch_list>) . page 248

[SENSe:]STRain:GFACtor? (@<channel>) . page 248

[SENSe:]STRain:POISson <poisson_ratio>,(@<ch_list>) . page 249

[SENSe:]STRain:POISson? (@<channel>) . page 249

[SENSe:]STRain:UNSTrained <unstrained_v>,(@<ch_list>) . page 249

[SENSe:]STRain:UNSTrained? (@<channel>) . page 250

[SENSe:]TOTalize:RESet:MODE INIT | TRIGger,(@<ch_list>) . page 250

[SENSe:]TOTalize:RESet:MODE? (@<channel>) . page 252

SOURce:FM[:STATe] 1 | 0 | O | OFF,(@<ch_list>) . page 253

SOURce:FM[:STATe]? (@<channel>) . page 254

SOURce:FUNCtion:[SHAPe:]CONDition (@<ch_list>) . page 254

SOURce:FUNCtion:[SHAPe:]PULSe (@<ch_list>) . page 254

SOURce:FUNCtion:[SHAPe:]SQUare (@<ch_list>) . page 255

SOURce:PULM[:STATe] 1 | 0 | ON | OFF,(@<ch_list>) . page 255

SOURce:PULM[:STATe]? (@<channel>) . page 255

SOURce:PULSe:PERiod <period>,(@<ch_list>) . page 256

SOURce:PULSe:PERiod? (@<channel>) . page 256

SOURce:PULSe:WIDth <width>,(@<ch_list>) . page 257

SOURce:PULSe:WIDth? (@<channel>) . page 257

STATus:OPERation:CONDition? . page 260

STATus:OPERation:ENABle <enable_mask> . page 261

STATus:OPERation:ENABle? . page 261

STATus:OPERation[:EVENt]? . page 262

STATus:OPERation:NTRansition <transition_mask> . page 262

STATus:OPERation:NTRansition? . page 263

STATus:OPERation:PTRansition <transition_mask> . page 263

STATus:OPERation:PTRansition? . page 264

STATus:PRESet . page 264

STATus:QUEStionable:CONDition? . page 265

STATus:QUEStionable:ENABle <enable_mask> . page 265

STATus:QUEStionable:ENABle? . page 266

STATus:QUEStionable[:EVENt]? . page 266

STATus:QUEStionable:NTRansition <transition_mask> . page 267

STATus:QUEStionable:NTRansition? . page 267

STATus:QUEStionable:PTRansition <transition_mask> . page 268

STATus:QUEStionable:PTRansition? . page 268

SYSTem:CTYPe? (@<channel>) . page 269

SYSTem:ERRor? . page 269

SYSTem:VERSion? . page 270

152 VT1415A Command Reference Chapter 6

TRIGger:COUNt <trig_count> . page 273

TRIGger:COUNt? . page 273

TRIGger[:IMMediate] . page 273

TRIGger:SOURce BUS | EXT | HOLD | IMM | SCP | TIMer | TTLTrg<n> page 274

TRIGger:SOURce? . page 275

TRIGger:TIMer[:PERiod] <trig_interval> . page 275

TRIGger:TIMer[:PERiod]? . page 275

Common Commands

*CAL? . page 276

*CLS . page 277

*DMC <name>,<cmd_data> . page 277

*EMC <enable> . page 277

*EMC? . page 277

*ESE . page 277

*ESE? . page 278

*ESR? . page 278

*GMC? <name> . page 278

*IDN? . page 278

*LMC? . page 279

*OPC . page 279

*OPC? . page 279

*PMC . page 279

*RMC <name> . page 279

*RST . page 280

*SRE . page 281

*SRE? . page 281

*STB? . page 281

*TRG . page 281

*TST? . page 281

*WAI . page 285

Command Fundamentals

Commands are separated into two types: IEEE-488.2 Common Commands and
SCPI Commands. The SCPI command set for the VT1415A is 1990 compatible.

Common
Command

Format

The IEEE-488.2 standard defines the Common commands that perform functions
like reset, self-test, status byte query, etc. Common commands are four or five
characters in length, always begin with the asterisk character (*), and may include
one or more parameters. The command keyword is separated from the first
parameter by a space character. Some examples of Common commands are:

*RST
*ESR 32
*STB?

Chapter 6 VT1415A Command Reference 153

SCPI
Command

Format

The SCPI commands perform functions like configuring channels, setting up the
trigger system and querying instrument states or retrieving data. A subsystem
command structure is a hierarchical structure that usually consists of a top level (or
root) command, one or more lower level commands and their parameters. The
following example shows part of a typical subsystem:

MEMory
:VME

:ADDRess <A24_address>
:ADDRess?
:SIZE <mem_size>
:SIZE?

MEMory is the root command, :VME is the second level command and :ADDRess and
SIZE are third level commands.

Command Separator A colon (:) always separates one command from the next lower level command as
shown below:

ROUTE:SEQUENCE:DEFINE?

Colons separate the root command from the second level command
(ROUTE:SEQUENCE) and the sec ond level from the third level
(SEQUENCE:DEFINE?). If pa ram e ters are pres ent, the first is sep a rated from the
com mand by a space char ac ter. Ad di tional pa ram e ters are sep a rated from each other
by commas.

Abbreviated
Commands

The command syntax shows most commands as a mixture of upper and lowercase
letters. The uppercase letters indicate the abbreviated spelling for the command. For
shorter program lines, send the abbreviated form. For better program readability,
send the entire command. The instrument will accept either the abbreviated form or
the entire command.

For example, if the command syntax shows SE Quence, then SEQ and SEQUENCE are
both ac cept able forms. Other forms of SE Quence, such as SEQUEN or SEQU will
gen er ate an er ror. Up per or low er case letters may be used. Therefore, SEQUENCE,
se quence, and Se QuEnCe are all acceptable.

Implied Commands Implied commands are those which appear in square brackets ([]) in the command
syntax. (Note that the brackets are not part of the command and are not sent to the
instrument.) Suppose a second level command is sent but the preceding implied
command is not sent. In this case, the instrument assumes the implied command is
intended and it responds as if were sent. Examine the INITiate subsystem shown
below:

INI Ti ate
[:IM Me di ate]

The second level command :IM Me di ate is an im plied com mand. To set the
in stru ment’s trig ger sys tem to INIT:IMM, send ei ther of the fol low ing com mand
statements: INIT:IMM or INIT.

154 VT1415A Command Reference Chapter 6

Variable Command
Syntax

Some commands will have what appears to be a variable syntax. As an example:

OUT Put:TTLTrg<n>:STATe ON

In these com mands, the “<n>” is re placed by a num ber. No space is left be tween the
com mand and the num ber be cause the num ber is not a pa ram e ter. The num ber is
part of the com mand syn tax. The pur pose of this no ta tion is to save a great deal of
space in the Com mand Ref er ence. In the case of …TTLTrg<n>…, n can be from 0
through 7. An ex am ple com mand state ment:

OUTPUT:TTLTRG2:STATE ON

Parameters Parameter Types. The following section contains explanations and examples of
parameter types that are seen later in this chapter.

Parameter Types Explanations and Examples

Numeric Accepts all commonly used decimal representations of numbers
including optional signs, decimal points and scientific notation:

123, 123E2, -123, -1.23E2, .123, 1.23E-2, 1.23000E-01.
Special cases include MIN, MAX, and IN Fin ity.

A pa ram e ter that rep re sents units may also in clude a units
 suffix. These are:

Volts; V, mv=10
-3
, uv=10

-6

Ohms; ohm, kohm=10
3
, mohm=10

6

Seconds; s, msec=10
-3
, usec=10

-6

Hertz; hz, khz=10
3
, mhz=10

6
, ghz=10

9

The Com ments sec tion within the Com mand Ref er ence will
state whether a nu meric pa ram e ter can also be spec i fied in hex,

 octal, and/or binary.
#H7B, #Q173, #B1111011

Boolean Represents a single binary condition that is either true or false.
ON, OFF, 1, 0.

Discrete Selects from a finite number of values. These parameters use
 mnemonics to represent each valid setting.

An example is the TRIG ger:SOURce <source> command
where <source> can be:

BUS, EXT, HOLD, IMM, SCP, TIMer or TTLTrg<n>.

Chan nel List The gen eral form of a sin gle chan nel spec i fi ca tion is:
ccnn

where cc rep re sents the card num ber and nn rep re sents the
channel number.

Chapter 6 VT1415A Command Reference 155

Since the VT1415A has an on-board 64 chan nel multi plexer,the
card num ber will be 1 and the chan nel num ber can range from

 00 to 63. Some ex am ple chan nel specifications:
channel 0=100, chan nel 5=105, chan nel 54=154

The Gen eral form of a chan nel range spec i fi ca tion is:
ccnn:ccnn (co lon separator)

(the sec ond chan nel must be greater than the first)
Example:

channels 0 through 15=100:115

By us ing com mas to sep a rate them, in di vid ual and range
specifications can be com bined into a sin gle chan nel list:
0, 5, 6 through 32, and 45=(@100,105,106:132,145)

Note that a chan nel list is al ways con tained within “(@”and “).”
The Com mand Ref er ence al ways shows the “(@” and “)”

 punctuation:
(@<ch_list>)

Ar bi trary Block This pa ram e ter or data type is used to trans fer a block of data in
Pro gram and the form of bytes. The block of data bytes is pre ceded by a
Re sponse Data pre am ble which in di cates ei ther 1) the num ber of data bytes

which fol low (def i nite length) or 2) that the fol low ing data
block will be ter mi nated upon re ceipt of a New Line message,
and for GPIB op er a tion, with the EOI sig nal true (indefinite

 l length).
The syn tax for this pa ram e ter is:

Def i nite Length: #<non-zero digit><digit(s)><data byte(s)>

Where the value of <non-zero digit> is 1-9 and rep re sents the
number of <digit(s)>. The value of <digit(s)> taken as a

 decimal integer in di cates the num ber of <data byte(s)> in the
block.

Example of send ing or re ceiv ing 1024 data bytes:

#41024<byte><byte1><byte2><byte3><byte4>¼

¼<byte1021><byte1022><byte1023><byte1024>

OR

In def i nite Length: #0<data byte(s)><NL^END>

Examples of send ing or re ceiv ing 4 data bytes:
#0<byte><byte><byte><byte><NL^END>

156 VT1415A Command Reference Chapter 6

Optional Parameters

Parameters shown within square brackets ([]) are optional parameters. (Note that
the brackets are not part of the command and should not be sent to the instrument.)
If a value for an optional parameter is not specified, the instrument chooses a default
value. For example, consider the FORMAT:DATA <type>[,<length>] command. If the
command is sent without specifying <length>, a default value for <length> will be
selected depending on the <type> of format specified.
For example:

FORMAT:DATA ASC will set [,<length>] to the default for ASC of 7
FORMAT:DATA REAL will set [,<length>] to the default for REAL of 32
FORMAT:DATA REAL, 64 will set [,<length>] to 64

Be sure to place a space between the command and the first parameter.

Linking
Commands

Linking commands provides a way to send more than one complete command in a
single command statement.

Linking IEEE-488.2 Common Commands with SCPI Commands. Use a
semicolon between the commands. For example:

*RST;OUTP:TTLT3 ON or TRIG:SOUR IMM;*TRG

Linking Multiple complete SCPI Commands. Use both a semicolon and a colon
between the commands. For example:

OUTP:TTLT2 ON;:TRIG:SOUR EXT

The semicolon as well as separating commands tells the SCPI parser to expect the
command keyword following the semicolon to be at the same hierarchical level (and
part of the same command branch) as the keyword preceding the semicolon. The
colon immediately following the semicolon tells the SCPI parser to reset the
expected hierarchical level to Root.

Linking a complete SCPI Command with other keywords from the same
branch and level. Separate the first complete SCPI command from next partial
command with the semicolon only. For example take the following portion of the
[SENSE] sub sys tem com mand tree (the FUNC tion branch):

[SENSe:]
FUNCtion

:RESistance <range>,(@<ch_list>)
:TEMPerature <sensor>[,<range>,](@<ch_list>)
:VOLTage[:DC] [<range>,](@<ch_list>)

Rather than sending a complete SCPI command to set each function, send:

FUNC:RES 10000,(@100:107);TEMP RTD, 92,(@108:115);VOLT (@116,123)

This sets the first eight channels to measure resistance, the next eight channels to
measure temperature and the next eight channels to measure voltage.

Chapter 6 VT1415A Command Reference 157

NOTE The command keywords following the semicolon must be from the same command
branch and level as the complete command preceding the semicolon or a
-113,"Undefined header" error will be generated.

C-SCPI Data
Types

The following table shows the allowable type and sizes of the C-SCPI parameter
data sent to the module and query data returned by the module. The parameter and
returned value type is necessary for programming and is documented in each
command in this chapter.

Data Types Description

int16 Signed 16-bit integer number.

int32 Signed 32-bit integer number.

uint16 Unsigned 16-bit integer number.

uint32 Unsigned 32-bit integer number.

float32 32-bit floating point number.

float64 64-bit floating point number.

string String of characters (null terminated).

158 VT1415A Command Reference Chapter 6

SCPI Command Reference

The following section describes the SCPI commands for the VT1415A. Commands
are listed alphabetically by subsystem and also within each subsystem. A command
guide is printed in the top margin of each page. The guide indicates the current
subsystem on that page.

Chapter 6 VT1415A Command Reference 159

ABORt

The ABORt subsystem is a part of the VT1415A’s trigger system. ABORt resets the
trigger system from its Wait For Trigger state to its Trigger Idle state.

Subsystem Syntax ABORt

CAUTION! ABORt stops execution of a running algorithm. The control output is left at the last
value set by the algorithm. Depending on the process, this uncontrolled situation can
be dangerous. Make certain that the process is in a safe state before halting the
execution of a controlling algorithm.

Comments · ABORt does not affect any other settings of the trigger system. When the
INITiate command is sent, the trigger system will respond just as it did before
the ABORt command was sent.

· Related Commands: INITiate[:IMMediate], TRIGger…

· *RST Condition: TRIG:SOUR HOLD

Usage ABORT If INITed, goes to "Trigger Idle" state. If
running algorithms, stops and goes to
"Trigger Idle" state.

160 VT1415A Command Reference Chapter 6

ALGorithm

The ALGorithm command subsystem provides:

· Definition of standard and custom control loop algorithms

· Communication with algorithm array and scalar variables

· Controls to enable or disable individual loop algorithms

· Control of ratio of number of scan triggers per algorithm execution

· Control of loop algorithm execution speed

· Easy definition of algorithm data conversion functions

Subsystem Syntax AL Go rithm
[:EX PLicit]

:AR Ray <alg_name>,<ar ray_name>,<block_data>
:AR Ray? <alg_name>,<ar ray_name>
:DE Fine <alg_name>[,<swap_size>],<pro gram_block>
:SCA Lar <alg_name>,<var_name>,<value>
:SCA Lar? <alg_name>,<var_name>
:SCAN:RA Tio <alg_name>,<value>
:SCAN:RA Tio? <alg_name>
:SIZe? <alg_name>
[:STATe] <alg_name>,ON | OFF
[:STATe]? <alg_name>
:TIMe? <alg_name>

:FUNC tion:DE Fine <func_name>,<range>,<off set>,<block_data>
:OUT Put:DE Lay <usec> | AUTO
:OUT Put:DE Lay?
:UP Date

[:IM Me di ate]
:CHAN nel <chan nel_item>
:WIN Dow <num_up dates>
:WIN Dow?

Chapter 6 VT1415A Command Reference 161

ALGorithm[:EXPLicit]:ARRay

ALGorithm[:EXPLicit]:ARRay <alg_name>,<array_name>,<array_block>
places values of <array_name> for algorithm <alg_name> into the Update Queue.
This update is then pending until ALG:UPD is sent or an update event (as set by
ALG:UPD:CHANNEL) occurs.

NOTE ALG:ARRAY places a variable update request in the Update Queue. Do not place
more update requests in the Update Queue than are allowed by the current setting of
ALG:UPD:WINDOW or a “Too many updates — send ALG:UPDATE command’
error message will be generated.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

alg_name string ALG1 - ALG32 | GLOBALS none

array_name string Valid ‘C’ variable name. none

array_block block data Block of IEEE-754 64-bit floating
point numbers.

none

Comments · To send values to a Global array, set the <alg_name> parameter to
“GLOBALS.” To define a global array, see the ALGorithm:DEFine command.

· An error is generated if <alg_name> or <array_name> is not defined.

· When an array is defined (in an algorithm or in ‘GLOBALS’), the VT1415A
allocates twice the memory required to store the array. When the ALG:ARRAY
command is sent, the new values for the array are loaded into the second space
for this array. When ALG:UPDATE or ALG:UPDATE:CHANNEL commands
are sent, the VT1415A switches a pointer to the space containing the new array
values. This is how even large arrays can be “updated” as if they were a single
update request. If the array is again updated, the new values are loaded into the
original space and the pointer is again switched.

· <progname> is not case sensitive. However, <array_name> is case sensitive.

· Related Commands: ALG:DEFINE, ALG:ARRAY?

· *RST Condition: No algorithms or variables are defined.

Usage send array values to my_array in ALG4

ALG:ARR ‘ALG4’,’my_array’,<block_array_data>

send array values to the global array glob_array

ALG:ARR ‘GLOBALS’,’glob_array’,<block_array_data>

ALG:UPD force update of variables

162 VT1415A Command Reference Chapter 6

ALGorithm[:EXPLicit]:ARRay?

ALGorithm[:EXPLicit]:ARRay? <alg_name>,<array_name> returns the
contents of <array_name> from algorithm <alg_name>. ALG:ARR? can return
contents of global arrays when <alg_name> specifies ‘GLOBALS.’

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

alg_name string ALG1 - ALG32 | GLOBALS none

array_name string Valid ‘C’ variable name. none

Comments · An error is generated if <alg_name> or <array_name> is not defined.

· Returned Value: Definite length block data of IEEE-754 64-bit float.

ALGorithm[:EXPLicit]:DEFine

ALGorithm[:EXPLicit]:DEFine ‘<alg_name>’,[<swap_size>,] ‘<source_code>’
is used to define control algorithms and global variables.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

alg_name string ALG1 - ALG32 | GLOBALS none

swap_size numeric (uint16) 0 - Max Available Algorithm Memory words

source_code string or block data
see Comments

 PIDA... | PIDB... | algorithm source none

Comments · The <alg_name> must be one of ALG1, ALG2, ALG3, etc. through ALG32 or
GLOBALS. The parameter is not case sensitive. ‘ALG1’ and ‘alg1’ are
equivalent as are ‘GLOBALS’ and ‘globals.’

· The <swap_size> parameter is optional. Include this parameter with the first
definition of <alg_name> to make it possible to change <alg_name> later while
it is running. The value can range up to about 23k words (ALG:DEF will then
allocate 46k words as it creates two spaces for this algorithm).

– If included, <swap_size> specifies the number of words of memory to allocate
for the algorithm specified by <alg_name>. The VT1415A will then allocate
this much memory again, as an update buffer for this algorithm. Note that this
doubles the amount of memory space requested. Think of this as “space1” and
“space2” for algorithm <alg_name>. When a replacement algorithm is sent
later (must be sent without the <swap_size> parameter), it will be placed in
“space2.” An ALG:UPDATE command must be sent for execution to switch

ALGorithm

Chapter 6 VT1415A Command Reference 163

from the original to the replacement algorithm. If the algorithm for
<alg_name> is again changed, it will be executed from “space1” and so on.
Note that <swap_size> must be large enough to contain the original executable
code derived from <source_code> and any subsequent replacement for it or an
error 3085 “Algorithm too big” will be generated.

– If <swap_size> is not included, the VT1415A will allocate just enough
memory for algorithm <alg_name>. Since there is no swapping buffer
allocated, this algorithm cannot be changed until a *RST command is sent to
clear all algorithms. See “When Accepted and Usage.”

· The <source_code> parameter contents can be:

– When <alg_name> is ‘ALG1’ through ‘ALG32’:

‘PIDA(<inp_channel>,<outp_channel>)’ or
‘PIDB(<inp_channel>,<outp_channel>,<alarm_channel>)’
< _channel> parameters can specify actual input and output channels or
they can specify global variables. This can be useful for inter-algorithm
communication. Any global variable name used in this manner must have
already been defined before this algorithm.

ALG:DEF ‘ALG3’,’PIDB(I100,O124,O132.B2)’

Algorithm Language source code representing a custom algorithm.

ALG:DEF ‘ALG5’,’if(First_loop) O116=0; O116=O116+0.01;,

– When <alg_name> is ‘GLOBALS’, Algorithm Language variable declarations.
A variable name must not be the same as an already define user function.

ALG:DEF ‘GLOBALS’,’static float my_glob_scalar, my_glob_array[24];’

The Algorithm Language source code is translated by the VT1415A’s driver into
an executable form and sent to the module. For ‘PIDA’ and ‘PIDB’ the driver
sends the stored executable form of these PID algorithms.

· The <source_code> parameter can be one of three different SCPI types:

– Quoted String: For short segments (single lines) of code, enclose the code
string within single (apostrophes) or double quotes. Because of string length
limitations within SCPI and some programming platforms, it is recommended
that the quoted string length not exceed a single program line. Examples:

ALG:DEF ‘ALG1’,’O108=I100;’ or ALG:DEF ‘ALG3’,’PIDA(I100,O124)’

– Definite Length Block Program Data: for longer code segments (like
complete custom algorithms) this parameter works well because it specifies the
exact length of the data block that will be transferred. The syntax for this
parameter type is:

#<non-zero digit><digit(s)><data byte(s)>

ALGorithm

164 VT1415A Command Reference Chapter 6

Where the value of <non-zero digit> is 1-9 and rep re sents the num ber of
<digit(s)>. The value of <digit(s)> taken as a dec i mal in te ger in di cates the
num ber of <data byte(s)> in the block. Ex am ple from “Quoted String” above:

ALG:DEF ‘ALG1’,#211O108=I100;Ø (where “Ø” is a null byte)

NOTE For Block Program Data, the Algorithm Parser requires that the <source_code>
data end with a null (0) byte. The null byte must be appended to the end of the
block’s <data byte(s)> and account for it in the byte count <digit(s)> from above. If
the null byte is not included or <digit(s)> doesn’t include it, the error “Algorithm
Block must contain termination ‘\0’” will be generated.

– Indefinite Length Block Program Data: this form terminates the data transfer
when it receives an End Identifier with the last data byte. Use this form only
when it is certain that the controller platform will include the End Identifier. If
it is not included, the ALG:DEF command will “swallow” whatever data
follows the algorithm code. The syntax for this parameter type is:

#0<data byte(s)><null byte with End Iden ti fier>

 Ex am ple from “Quoted String” above:
ALG:DEF ‘ALG1’,#0O108=I100;Ø (where “Ø” is a null byte)

NOTE For Block Program Data, the Algorithm Parser requires that the <source_code>
data end with a null (0) byte. The null byte must be appended to the end of the
block’s <data byte(s)>. The null byte is sent with the End Identifier. If the null byte
is not included, the error “Algorithm Block must contain termination ‘\0’” will be
generated.

When accepted
and Usage

If <alg_name> is not enabled to swap (not originally defined with the <swap_size>
parameter included) then both of the following conditions must be true:

a. Module is in Trigger Idle State (after *RST or ABORT and before INIT).

OK
*RST
ALG:DEF ‘GLOBALS’,’static float My_global;’
ALG:DEF ‘ALG2’,’PIDA(I100,O108)’
ALG:DEF ‘ALG3’,’My_global = My_global + 1;’

Error

INIT

ALG:DEF ‘ALG5’,’PIDB(I101,O109,O124.B0)’
“Can’t define new algorithm while running”

ALGorithm

Chapter 6 VT1415A Command Reference 165

b. The <alg_name> has not already been defined since a *RST command. Here,
<alg_name> specifies either an algorithm name or ‘GLOBALS.’

OK
*RST
ALG:DEF ‘GLOBALS’,’static float My_global;’

Error
*RST
ALG:DEF ‘GLOBALS’,’static float My_global;’
“No error”
ALG:DEF ‘GLOBALS’,’static float A_different_global’

“Algorithm already defined” Because ‘GLOBALS’ already defined

Error
*RST
ALG:DEF ‘ALG3’,’PIDA(I100,O108)’
“No error”
ALG:DEF ‘ALG3’,’PIDB(I100,O108,O124.B0)’

“Algorithm already defined” Because ‘ALG3’ already defined

If <alg_name> has been enabled to swap (originally defined with the <swap_size>
parameter included) then the <alg_name> can be re-defined (do not include
<swap_size> now) either while the module is in the Trigger Idle State or while in
Waiting For Trigger State (INITed). Here, <alg_name> is an algorithm name only,
not ‘GLOBALS.’

OK
*RST
ALG:DEF ‘ALG3’,200,’if(O108<15.0) O108=O108 + 0.1;

else O108 = -15.0;’

INIT starts algorithm

ALG:DEF ‘ALG3’,’if(O108<12.0) O108=O108 + 0.2; else O108 = -12.0;’

ALG:UPDATE Required to cause new code to run

“No error”

Error
*RST
ALG:DEF ‘ALG3’,200,’if(O108<15.0) O108=O108 + 0.1;

else O108 = -15.0;’

INIT starts algorithm

ALG:DEF ‘ALG3’,200,’if(O108<12.0) O108=O108 + 0.2;
else O108 = -12.0;’

“Algorithm swapping already enabled; Can’t change size”

Because <swap_size> included at re-definition

NOTES 1. Channels referenced by algorithms when they are defined are only placed in the
channel list before INIT. The list cannot be changed after INIT. If an algorithm
is re-defined (by swapping) after INIT and it references channels not already in
the channel list, it will not be able to access the newly referenced channels. No
error message will be generated. To make sure all required channels will be

ALGorithm

166 VT1415A Command Reference Chapter 6

included in the channel list, define <alg_name> and re-define all algorithms that
will replace <alg_name> by swapping them before sending INIT. This insures
that all channels referenced in these algorithms will be available after INIT.

2. If an algorithm is re-defined (by swapping) after INIT and it declares an
existing variable, the declaration-initialization statement (e.g. static
float my_var = 3.5) will not change the current value of that variable.

3. The driver only calculates overall execution time for algorithms defined before
INIT. This calculation is used to set the default output delay (same as executing
ALG:OUTP:DELAY AUTO). If an algorithm is swapped after INIT that takes
longer to execute than the original, the output delay will behave as if set by
ALG:OUTP:DEL 0, rather than AUTO (see ALG:OUTP:DEL command). Use
the same procedure from note 1 to make sure the longest algorithm execution
time is used to set ALG:OUTP:DEL AUTO before INIT.

ALGorithm[:EXPLicit]:SCALar

ALGorithm[:EXPLicit]:SCALar <alg_name>,<var_name>,<value> sets the
value of the scalar variable <var_name> for algorithm <alg_name> into the Update
Queue. This update is then pending until ALG:UPD is sent or an update event (as
set by ALG:UPD:CHANNEL) occurs.

NOTE ALG:SCALAR places a variable update request in the Update Queue. Do not place
more update requests in the Update Queue than are allowed by the current setting of
ALG:UPD:WINDOW or a “Too many updates — send ALG:UPDATE command”
error message will be generated.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

alg_name string ALG1 - ALG32 or GLOBALS none

var_name string Valid ‘C’ variable name. none

value numeric (float32) IEEE-754 32-bit floating point number none

Comments · To send values to a global scalar variable, set the <alg_name> parameter to
‘GLOBALS.’ To define a scalar global variable, see the ALGorithm:DEFine
command.

· An error is generated if <alg_name> or <var_name> is not defined.

· Related Commands: ALG:DEFINE, ALG:SCAL?

· *RST Condition: No algorithms or variables are defined.

ALGorithm

Chapter 6 VT1415A Command Reference 167

Usage ALG:SCAL ‘ALG1’,’my_var’,1.2345 1.2345 to variable my_var in ALG1

ALG:SCAL ‘ALG1’,’another’,5.4321 5.4321 to variable another also in ALG1

ALG:SCAL ‘ALG3’,’my_global_var’,1.001 1.001 to global variable

ALG:UPD update variables from update queue

ALGorithm[:EXPLicit]:SCALar?

ALGorithm[:EXPLicit]:SCALar? <alg_name>,<var _name> returns the value of
the scalar variable <var_name> in algorithm <alg_name>.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

alg_name string ALG1 - ALG32 none

var_name string Valid ‘C’ variable name. none

Comments · An error is generated if <alg_name> or <var_name> is not defined.

· Returned Value: numeric value. The type is float32.

ALGorithm[:EXPLicit]:SCAN:RATio

ALGorithm[:EXPLicit]:SCAN:RATio <alg_name>,<num_trigs> specifies the
number of scan triggers that must occur for each execution of algorithm
<alg_name>. This allows the specified algorithm to be executed less often than
other algorithms. This can be useful for algorithm tuning.

NOTES 1. The command ALG:SCAN:RATio <alg_name>,<num_trigs> does not take
effect until an ALG:UPDATE or ALG:UPD:CHAN command is received. This
allows multiple ALG:SCAN:RATIO commands to be sent with their effect
synchronized with ALG:UPDATE.

2. ALG:SCAN:RATio places a variable update request in the Update Queue. Do
not place more update requests in the Update Queue than are allowed by the
current setting of ALG:UPD:WINDOW or a “Too many updates — send
ALG:UPDATE command” error message will be generated.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

alg_name string ALG1 - ALG32 none

num_trigs numeric (int16) 1 to 32,767 none

ALGorithm

168 VT1415A Command Reference Chapter 6

Comments Specifying a value of 1 (the default) causes the named algorithm to be executed
each time a trigger is received. Specifying a value of n will cause the algorithm to
be executed once every n triggers. All enabled algorithms execute on the first trigger
after INIT.

· The algorithm specified by <alg_name> may or may not be currently defined.
The specified setting will be used when the algorithm is defined.

· Related Commands: ALG:UPDATE, ALG:SCAN:RATIO?

· When Accepted: Both before and after INIT. Also accepted before and after
the algorithm referenced is defined.

· *RST Condition: ALG:SCAN:RATIO = 1 for all algorithms

Usage ALG:SCAN:RATIO ‘ALG4’,16 ALG4 executes once every 16 triggers.

ALGorithm[:EXPLicit]:SCAN:RATio?

ALGorithm[:EXPLicit]:SCAN:RATio? <alg_name> returns the number of
triggers that must occur for each execution of <alg_name>.

Comments · Since ALG:SCAN:RATIO is valid for an undefined algorithm,
ALG:SCAN:RATIO? will return the current ratio setting for <alg_name> even
if it is not currently defined.

· Returned Value: numeric, 1 to 32,768. The type is int16.

ALGorithm[:EXPLicit]:SIZe?

ALGorithm[:EXPLicit]:SIZe? <alg_name> returns the number of words of
memory allocated for algorithm <alg_name>.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

alg_name string ALG1 - ALG32 none

Comments · Since the returned value is the memory allocated to the algorithm, it will only
equal the actual size of the algorithm if it was defined by ALG:DEF without its
[<swap_size>] parameter. If enabled for swapping (if <swap_size> included at
original definition), the returned value will be equal to (<swap_size>)*2.

NOTE If <alg_name> specifies an undefined algorithm, ALG:SIZ? returns 0. This can be
used to determine whether algorithm <alg_name> is defined.

ALGorithm

Chapter 6 VT1415A Command Reference 169

· Returned Value: numeric value up to the maximum available algorithm
memory (this approximately 46k words). The type is int32.

· *RST Condition: returned value is 0.

ALGorithm[:EXPLicit][:STATe]

ALGorithm[:EXPLicit][:STATe] <alg_name>,<enable> specifies that algorithm
<alg_name>, when defined, should be executed (ON) or not executed (OFF) during
run-time.

NOTES 1. The command ALG:STATE <alg_name>, ON | OFF does not take effect until
an ALG:UPDATE or ALG:UPD:CHAN command is received. This allows
multiple ALG:STATE commands to be sent with a synchronized effect.

2. ALG:STATE places a variable update request in the Update Queue. Do not
place more update requests in the Update Queue than are allowed by the current
setting of ALG:UPD:WINDOW or a “Too many updates — send
ALG:UPDATE command” error message will be generated.

CAUTION! When ALG:STATE OFF disables an algorithm, its control output is left at the
last value set by the algorithm. Depending on the process, this uncontrolled
situation can be dangerous. Make certain that the process is in a safe state
before halting the execution of a controlling algorithm.

The Agilent/HP E1535 Watchdog Timer SCP was specifically developed to
automatically signal that an algorithm has stopped controlling a process. Use of
the Watchdog Timer is recommended for critical processes.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

alg_name string ALG1 - ALG32 none

enable boolean (uint16) 0 | 1 | ON | OFF none

Comments · The algorithm specified by <alg_name> may or may not be currently defined.
The setting specified will be used when the algorithm is defined.

· *RST Condition: ALG:STATE ON

· When Accepted: Both before and after INIT. Also accepted before and after
the algorithm referenced is defined.

· Related Commands: ALG:UPDATE, ALG:STATE?, ALG:DEFINE

ALGorithm

170 VT1415A Command Reference Chapter 6

Usage ALG:STATE ‘ALG2’,OFF disable ALG2

ALGorithm[:EXPLicit][:STATe]?

ALGorithm[:EXPLicit][:STATe]? <alg_name> returns the state (enabled or
disabled) of algorithm <alg_name>.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

alg_name string ALG1 - ALG32 none

Comments · Since ALG:STATE is valid for an undefined algorithm, ALG:STATE? will
return the current state for <alg_name> even if it is not currently defined.

· Returned Value: Numeric, 0 or 1. Type is uint16.

· *RST Condition: ALG:STATE 1

ALGorithm[:EXPLicit]:TIMe?

ALGorithm[:EXPLicit]:TIMe? <alg_name> computes and returns a worst-case
execution time estimate in seconds.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

alg_name string ALG1 - ALG32 or MAIN none

Comments · When <alg_name> is ALG1 through ALG32, ALG:TIME? returns only the
time required to execute the algorithm’s code.

· When <alg_name> is ‘MAIN’, ALG:TIME? returns the worst-case execution
time for an entire measurement & control cycle (sum of MAIN, all enabled
algorithms, analog and digital inputs, and control outputs).

· If triggered more rapidly than the value returned by ALG:TIM? ‘MAIN’, the
VT1415A will generate a “Trigger too fast” error.

NOTE If <alg_name> specifies an undefined algorithm, ALG:TIM? returns 0. This can be
used to determine whether algorithm <alg_name> is defined.

· When Accepted: Before INIT only.

· Returned Value: numeric value. The type is float32

ALGorithm

Chapter 6 VT1415A Command Reference 171

ALGorithm:FUNCtion:DEFine

ALGorithm:FUNCtion:DEFine <function_name>,<range>,<offset>,
<func_data> defines a custom function that can be called from within a custom
algorithm. See Appendix F, “Generating User Defined Functions,” for full
information.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

function_name string Valid ‘C’ identifier.
(If not already defined in ‘GLOBALS’)

none

range numeric (float32) See comments. none

offset numeric (float32) See comments. none

func_data 512 element array
of uint16

See comments. none

Comments · By providing this custom function capability, the VT1415A’s algorithm
language can be kept simple in terms of mathematical capability. This increases
speed. Rather than having to calculate high-order polynomial approximations of
non-linear functions, this custom function scheme loads a pre-computed look-up
table of values into memory. This method allows computing virtually any
transcendental or non-linear function in only 17 µs. Resolution is 16 bits.

· The <function_name> parameter is a global identifier and cannot be the same as
a previously define global variable. A user function is globally available to all
defined algorithms.

· Values for <range>, <offset>, and <func_data> are generated by a program
supplied with the VT1415A. It is provided in C-SCPI and Agilent BASIC
forms. See Appendix F, “Generating User Defined Functions,” for full
information.

· The <range> and <offset> parameters define the allowable input values to the
function (domain). If values input to the function are equal to or outside of
(±<range>+<offset>), the function may return ±INF in IEEE-754 format. For
example, <range> = 8 (-8 to 8), <offset> = 12. The allowable input values must
be greater than 4 and less than 20.

· The <func_data> parameter is a 512 element array of type uint16.

· The algorithm syntax for calling is: <function_name> (<expression>). for
example:
O116 = squareroot(2 * Input_val);

· Functions must be defined before defining algorithms that reference them.

· When Accepted: Before INIT only.

Usage ALG:FUNC:DEF ‘F1’,8,12,<block_data> send range, offset and table values for
function F1

ALGorithm

172 VT1415A Command Reference Chapter 6

ALGorithm:OUTPut:DELay

ALGorithm:OUTPut:DELay <delay> sets the delay from Scan Trigger to start of
output phase.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

delay numeric (float32) 0 - 0.081 | AUTO (2.5 µs resolution) seconds

Comments · The algorithm output statements (e.g. O115 = Out_val) DO NOT program
outputs when they are executed. Instead, these statements write to an
intermediate Output Channel Buffer which is read and used for output AFTER
all algorithms have executed AND the algorithm output delay has expired (see
Figure 6-1). Also, note that not all outputs will occur at the same time but will
take approximately 10 µs per channel to write.

· When <delay> is 0, the Output phase begins immediately after the Calculate
phase. This provides the fastest possible execution speed while potentially
introducing variations in the time between trigger and beginning of the Output
phase. The variation can be caused by conditional execution constructs in
algorithms or other execution time variations.

· If <delay> is set to less than the time required for the Input + Update +
Calculate, ALG:OUTP:DELAY? will report the time set, but the effect will
revert to the same that is set by ALG:OUTP:DELAY 0 (Output begins
immediately after Calculate).

· When <delay> is AUTO, the delay is set to the worst-case time required to
execute phases 1 through 3. This provides the fastest execution speed while
maintaining a fixed time between trigger and the OUTPUT phase.

· To set the time from trigger to the beginning of OUTPUT, use the following
procedure. After defining all algorithms, execute:

ALG:OUTP:DEL AUTO sets minimum stable delay

ALG:OUTP:DEL? returns this minimum delay

ALG:OUTP:DEL <minimum+additional> additional = desired - minimum

Note that the delay value returned by ALG:OUTP:DEL? is valid only until
another algorithm is loaded. After that, re-issue the ALG:OUTP:DEL AUTO and
ALG:OUTP:DEL? commands to determine the new delay that includes the added
algorithm.

· When Accepted: Before INIT only.

· *RST Condition: ALG:OUTP:DELAY AUTO

ALGorithm

Chapter 6 VT1415A Command Reference 173

ALGorithm:OUTPut:DELay?

ALGorithm:OUTPut:DELay? returns the delay setting from ALG:OUTP:DEL.

Comments · The value returned will be either the value set by ALG:OUTP:DEL <delay> or
the value determined by ALG:OUTP:DEL AUTO.

· When Accepted: Before INIT only.

· *RST Condition: ALG:OUTP:DEL AUTO, returns delay setting determined
by AUTO mode.

· Returned Value: number of seconds of delay. The type is float32.

ALGorithm:UPDate[:IMMediate]

ALGorithm:UPDate[:IMMediate] requests an immediate update of any scalar, array,
algorithm code, ALG:STATE, or ALG:SCAN:RATIO changes that are pending.

Comments · Variables and algorithms can be accepted during Phase 1-INPUT or Phase
2-UPDATE in Figure 6-1 when INIT is active. All writes to variables and
algorithms occur to their buffered elements upon receipt. However, these
changes do not take effect until the ALG:UPD:IMM command is processed at
the beginning of the UPDATE phase. The update command can be received at
any time prior to the UPDATE phase and will be the last command accepted.
Note that the ALG:UPD:WINDow command specifies the maximum number of
updates to do. If no update command is pending when entering the UPDATE
phase, then this time is dedicated to receiving more changes from the system.

· As soon as the ALG:UPD:IMM command is received, no further changes are
accepted until all updates are complete. A query of an algorithm value following
an UPDate command will not be executed until the UPDate completes; this may
be a useful synchronizing method.

ALGorithm

174 VT1415A Command Reference Chapter 6

Figure 6-1: Updating Variables and Algorithms

4
OUTPUT

(output table sent
to SCP channels)

3
CALCULATE

(execute all enabled algorithms)

2
UPDATE

(variables &
algorithms)

Set by ALG:OUTPut:DELay (if any)

• • •

Scan TriggerScan Trigger

1
INPUT

(from SCP
channels,

analog & digital)

1
INPUT

(from SCP
channels,

analog & digital)

4
OUTPUT

(output table sent
to SCP channels)

· When Accepted: Before or after INIT.

· Related Commands: ALG:UPDATE:WINDOW, ALG:SCALAR,
ALG:ARRAY, ALG:STATE, and ALG:SCAN:RATIO, ALG:DEF (with
swapping enabled)

Command Sequence The following example shows three scalars being written with the associated update
command following. See ALG:UPD:WINDOW.

ALG:SCAL ALG1’,’Setpoint’,25

ALG:SCAL ‘ALG1’,’P_factor’,1.3

ALG:SCAL ‘ALG2’,’P_factor’,1.7

ALG:UPD

ALG:SCAL? ‘ALG2’,’Setpoint’

ALGorithm:UPDate:CHANnel

ALGorithm:UPDate:CHANnel <dig_chan> This command is used to update
variables, algorithms, ALG:SCAN:RATIO, and ALG:STATE changes when the
specified digital input level changes state. When the ALG:UPD:CHAN command is
executed, the current state of the digital input specified is saved. The update will be
performed at the next update phase (UPDATE in Figure 6-1), following the
channel’s change of digital state. This command allows multiple VT1415As to be
synchronized so that all variable updates can be processed simultaneously.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

dig_chan Algorithm
Language channel
specifier (string)

Input channel for VT1533A: Iccc.Bb
for VT1534A: Iccc.

Where ccc=normal channel number and
b=bit number (include “.B”).

none

Comments · The duration of the level change to the designated bit or channel MUST be at
least the length of time between scan triggers. Variable and algorithm changes
can be accepted during the INPUT or UPDATE phases (Figure 6-1) when INIT
is active. All writes to variables and algorithms occur to their buffered elements
upon receipt. However, these changes do not take effect until the
ALG:UPD:CHAN command is processed at the beginning of the UPDATE
phase. Note that the ALG:UPD:WINDow command specifies the maximum
number of updates to do. If no update command is pending when entering the
UPDATE phase, then this time is dedicated to receiving more changes from the
system.

NOTE As soon as the ALG:UPD:CHAN command is received, the VT1415A begins to
closely monitor the state of the update channel and can not execute other commands
until the update channel changes state to complete the update

ALGorithm

Chapter 6 VT1415A Command Reference 175

· Note that an update command issued after the start of the UPDATE phase will
be buffered but not executed until the beginning of the next INPUT phase. At
that time, the current stored state of the specified digital channel is saved and
used as the basis for comparison for state change. If at the beginning of the scan
trigger the digital input state had changed, then at the beginning of the UPDATE
phase the update command would detect a change from the previous scan trigger
and the update process would begin.

· When Accepted: Before and After INIT.

Command Sequence The following example shows three scalars being written with the associated update
command following. When the ALG:UPD:CHAN command is received, it will read
the current state of channel 108, bit 0. At the beginning of the UPDATE phase, a
check will be made to determine if the stored state of channel 108 bit 0 is different
from the current state. If so, the update of all three scalars take effect next Phase 2.

INIT

ALG:SCAL ‘ALG1’,’Setpoint’,25

ALG:SCAL ‘ALG1’,’P_factor’,1.3

ALG:SCAL ‘ALG2’,’P_factor’,1.7

ALG:UPD:CHAN ‘I108.B0’ update on state change at bit zero of 8-bit
channel 8

ALGorithm:UPDate:WINDow

ALGorithm:UPDate:WINDow <num_updates> specifies how many updates may
need to be performed during phase 2 (UPDATE). The DSP will process this
command and assign a constant window of time for UPDATE.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

num_updates numeric (int16) 1 - 512 none

Comments · The default value for <num_updates> is 20. If it is known that fewer updates
are needed, specifying a smaller number will result in slightly faster loop
execution speeds.

· This command creates a time interval in which to perform all pending algorithm
and variable updates. To keep the loop times predictable and stable, the time
interval for UPDATE is constant. That is, it exists for all active algorithms each
time they are executed whether or not an update is pending.

· *RST Condition: ALG:UPD:WIND 20

· When Accepted: Before INIT only.

Usage It is decided that a maximum of eight variables updates will be needed during
run-time.

ALG:UPD:WIND 8

ALGorithm

176 VT1415A Command Reference Chapter 6

NOTES 1. When the number of update requests exceeds the Update Queue size set with
ALG:UPD:WINDOW by one, the module will refuse the request and will issue
the error message “Too many updates in queue. Must send UPDATE
command.” Send ALG:UPDATE, then re-send the update request that caused
the error.

2. The “Too many updates in queue…” error can occur before the module is
INITialized. It’s not uncommon with several algorithms defined to have more
variables that need to be pre-set before INIT than will be changed in one update
after the algorithms are running. INIT can be sent with updates pending. The
INIT command automatically performs the updates before starting the
algorithms.

ALGOrithm:UPDate:WINDow?

ALGOrithm:UPDate:WINDow? returns the number of variable and algorithm
updates allowed within the UPDATE window.

· Returned Value: number of updates in the UPDATEwindow. The type is
int16.

ALGorithm

Chapter 6 VT1415A Command Reference 177

ARM

With the VT1415A, when the TRIG:SOURCE is set to TIMer, an ARM event must
occur to start the timer. This can be something as simple as executing the
ARM[:IMMediate] command or it could be another event selected by
ARM:SOURCE.

NOTE The ARM subsystem may only be used when the TRIGger:SOURce is TIMer. If the
TRIGger:SOURce is not TIMer and ARM:SOURce is set to anything other than
IMMediate, an Error -221,"Settings conflict" will be generated.

The ARM command subsystem provides:

· An immediate software ARM (ARM:IMM).

· Selection of the ARM source (ARM:SOUR BUS | EXT | HOLD | IMM | SCP |
TTLTRG<n>) when TRIG:SOUR is TIMer.

Figure 6-2 shows the overall logical model of the Trigger System.

ARM

178 VT1415A Command Reference Chapter 6

A
R

M
/T

R
IG

g
e

r S
o

u
rce

s

A
R

M
 S

o
u

rce
 S

e
le

cto
r

T
rig

g
e

r S
o

u
rce

 S
e

le
cto

r

EXTernal

Trigger
Timer

Trigger
Enable

TIMer

TRIGger:TIMer <interval>

TRIGger:SOURce <source>

TRIGger:COUNt <count>

Internal
Trigger Signal

Trigger Counter

ARM:SOURce <source>

HOLD

IMMediate

TTLTrg<n>

SCP Trig

BUS

Figure 6-2: Logical Trigger Model

Subsystem Syntax ARM
[:IMMediate]
:SOURce BUS | EXTernal | HOLD | IMMediate | SCP | TTLTrg<n>
:SOURce?

ARM[:IMMediate]

ARM[:IMMediate] arms the trigger system when the module is set to the
ARM:SOUR BUS or ARM:SOUR HOLD mode.

Comments · Related Commands: ARM:SOURCE, TRIG:SOUR

· *RST Condition: ARM:SOUR IMM

Usage ARM:IMM After INIT, system is ready for trigger event

ARM Same as above (:IMM is optional)

ARM:SOURce

ARM:SOURce <arm_source> configures the ARM system to respond to the
specified source.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

arm_source discrete (string) BUS | EXT | HOLD | IMM | SCP
| TTLTrg<n>

none

Comments · The following table explains the possible choices.

Parameter Value Source of Arm

BUS ARM[:IMMediate]

EXTernal “TRG” signal on terminal module

HOLD ARM[:IMMediate]

IMMediate The arm signal is always true (continuous arming)

SCP SCP Trigger Bus (future SCP Breadboard)

TTLTrg<n> The VXIbus TTLTRG lines (n=0 through 7)

· See note about ARM subsystem on page 178.

· When TRIG:SOURCE is TIMER, an ARM event is required only to trigger the
first scan. After that the timer continues to run and the module goes to the
"Waiting For Trigger" state ready for the next Timer trigger. An ABORT
command will return the module to the "Trigger Idle" state after the current scan
is completed. See TRIG:SOURce for more detail.

While ARM:SOUR is IMM, simply INITiate the trigger system to start a
measurement scan.

ARM

Chapter 6 VT1415A Command Reference 179

· When Accepted: Before INIT only.

· Related Commands: ARM:IMM, ARM:SOURCE?, INIT[:IMM],
TRIG:SOUR

· *RST Condition: ARM:SOUR IMM

Usage ARM:SOUR BUS Arm with ARM command

ARM:SOUR TTLTRG3 Arm with VXIbus TTLTRG3 line

ARM:SOURce?

ARM:SOURce? returns the current arm source configuration. See the ARM:SOUR
command for more response data information.

· Returned Value: Discrete, one of BUS, HOLD, IMM, SCP, or TTLT0 through
TTLT7. The C-SCPI type is string.

Usage ARM:SOUR? An enter statement return arm source
configuration

180 VT1415A Command Reference Chapter 6

CALibration

The Calibration subsystem provides for two major categories of calibration:

1. “A/D Calibration”: In these procedures, an external multimeter is used to
calibrate the A/D gain on all 5 of its ranges. The multimeter also determines the
value of the VT1415A’s internal calibration resistor. The values generated from
this calibration are then stored in nonvolatile memory and become the basis for
“Working Calibrations. These procedures each require a sequence of several
commands from the CALibration subsystem (CAL:CONFIG…,
CAL:VALUE:… and CAL:STORE ADC). Always execute *CAL? or a
CAL:TARE operation after A/D Calibration.

2. “Working Calibration”: This category consists of three levels (see Figure 6-3):

– “A/D Zero”: This function quickly compensates for any short term A/D
converter offset drift. This would be called the auto-zero function in a
conventional voltmeter. In the VT1415A where channel scanning speed is of
primary importance, this function is performed only when the CAL:ZERO?
command is executed. Execute CAL:ZERO? as often as the control setup will
allow.

– “Channel Calibration”: This function corrects for offset and gain errors for
each module channel. The internal current sources are also calibrated. This
calibration function corrects for thermal offsets and component drift for each
channel out to the input side of the Signal Conditioning Plug-On (SCP). All
calibration sources are on-board and this function is invoked using either the
*CAL? or CAL:SETup command.

– “Channel Tare”: This function (CAL:TARE) corrects for voltage offsets in
external system wiring. Here, the user places a short across transducer wiring
and the voltage that the module measures is now considered the new “zero”
value for that channel. The new offset value can be stored in non-volatile
calibration memory (CAL:STORE TARE) but is in effect whether stored or
not. System offset constants which are considered long-term should be stored.
Offset constants which are measured relatively often would not require
non-volatile storage. CAL:TARE automatically executes a *CAL?.

CALibration

Chapter 6 VT1415A Command Reference 181

Subsystem Syntax CALibration
:CONFigure

:RESistance
:VOLTage <range>, ZERO | FS

:SETup
:SETup?
:STORe ADC | TARE
:TARE (@<ch_list>)

:RESet
:TARE?
:VALue

:RESistance <ref_ohms>
:VOLTage <ref_volts>

:ZERO?

CALibration:CONFigure:RESistance

CALibration:CONFigure:RESistance connects the on-board reference resistor to
the Calibration Bus. A four-wire measurement of the resistor can be made with an
external multimeter connected to the H Cal, L Cal, H ohm, and L ohm terminals

on the Terminal Module or the V H, V L, W H, and W L terminals on the Cal Bus
connector.

Comments · Related Commands: CAL:VAL:RES, CAL:STOR ADC

· When Accepted: Not while INITiated

CALibration

182 VT1415A Command Reference Chapter 6

SCP

SCP

SCP

SCP

SCP

8

8

8

8

8

8

8

8

SCP

SCP

SCP
M

u
lti

p
le

x
e

r

CAL:ZERO?

CAL:TARE

*CAL? or
CAL:SETup

U
s
e

r’
s

S
ys

te
m

 W
ir
in

g

Figure 6-3: Levels of Working Calibration

Command Sequence CAL:CONF:RES Connect reference resistor to Calibration
Bus

*OPC? or SYST:ERR? must wait for CAL:CONF:RES to complete

(now measure ref resistor with external DMM)

CAL:VAL:RES <measured value> Send measured value to module

CAL:STORE ADC Store cal constants in non-volatile memory
(used only at end of complete cal sequence)

CALibration:CONFigure:VOLTage

CALibration:CONFigure:VOLTage <range>,<zero_fs> connects the on-board
voltage reference to the Calibration Bus. A measurement of the source voltage can
be made with an external multimeter connected to the H Cal and L Cal terminals on
the Terminal Module or the V H and V L terminals on the Cal Bus connector. The
<range> parameter controls the voltage level available when the <zero_fs>
parameter is set to FSCale (full scale).

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

range numeric (float32) See comments. volts

zero_fs discrete (string) ZERO | FSCale none

Comments · The <range> parameter must be within ±5% of one of the five following
values: 0.0625 V dc, 0.25 V dc, 1 V dc, 4 V dc, 16 V dc <range> may be
specified in millivolts (mv).

· The FSCALE output voltage of the calibration source will be greater than 90%
of the nominal value for each range, except the 16 V range where the output is
10 V.

· When Accepted: Not while INITiated

· Related Commands: CAL:VAL:VOLT, STOR ADC

Command Sequence CAL:CONF:VOLTAGE .0625, ZERO connect voltage reference to Calibration
Bus

*OPC? or SYST:ERR? must wait for CAL:CONF:VOLT to
complete

(now measure voltage with external DMM)

CAL:VAL:VOLT <measured value> Send measured value to module

repeat above sequence for full-scale

repeat zero and full-scale for remaining ranges (0.25, 1, 4, 16)

CAL:STORE ADC Store cal constants in non-volatile memory
(used only at end of complete cal sequence)

Chapter 6 VT1415A Command Reference 183

CALibration:SETup

CALibration:SETup causes the Channel Calibration function to be performed for
every module channel with an analog SCP installed (input or output). The Channel
Calibration function calibrates the A/D Offset and the Gain/Offset for these analog
channels. This calibration is accomplished using internal calibration references. For
more information see *CAL? on page 276.

Comments · CAL:SET performs the same operation as the *CAL? command except that,
since it is not a query command, it doesn’t tie-up the C-SCPI driver waiting for
response data from the instrument. If there are multiple VT1415As in a system,
start a CAL:SET operation on each and then execute a CAL:SET? command to
complete the operation on each instrument.

· Related Commands: CAL:SETup?, *CAL?

· When Accepted: Not while INITiated

Usage CAL:SET start SCP Calibration on 1st VT1415A

: start SCP Calibration on more VT1415As

CAL:SET start SCP Calibration on last VT1415A

CAL:SET? query for results from 1st VT1415A

: query for results from more VT1415As

CAL:SET? query for results from last VT1415A

CALibration:SETup?

CALibration:SETup? Returns a value to indicate the success of the last
CAL:SETup or *CAL? operation. CAL:SETup? returns the value only after the
CAL:SETup operation is complete.

Comments · Returned Value:

Value Meaning Further Action

0 Cal OK None

-1 Cal Error Query the Error Queue (SYST:ERR?)
See Error Messages in Appendix B.

Also run *TST?

-2 No results available No *CAL? or CAL:SETUP done.

The C-SCPI type for this returned value is int16.

· Related Commands: CAL:SETup, *CAL?

Usage see CAL:SETup

CALibration

184 VT1415A Command Reference Chapter 6

CALibration:STORe

CALibration:STORe <type> stores the most recently measured calibration
constants into Flash Memory (Electrically Erasable Programmable Read Only
Memory). When <type> = ADC, the module stores its A/D calibration constants as
well as constants generated from *CAL?/CAL:SETup into Flash Memory. When
<type> = TARE, the module stores the most recently measured CAL:TARE
channel offsets into Flash Memory.

NOTE The VT1415A’s Flash Memory has a finite lifetime of approximately ten thousand
write cycles (unlimited read cycles). While executing CAL:STOR once every day
would not exceed the lifetime of the Flash Memory for approximately 27 years, an
application that stored constants many times each day would unnecessarily shorten
the Flash Memory’s lifetime. See Comments below.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

type discrete (string) ADC | TARE none

Comments · The Flash Memory Protect jumper (JM2201) must be set to the enable position
before executing this command (see Chapter 1).

· Channel offsets are compensated by the CAL:TARE command even when not
stored in the Flash Memory. There is no need to use the CAL:STORE TARE
command for channels which are re-calibrated frequently.

· When Accepted: Not while INITiated.

· Related Commands: CAL:VAL:RES, CAL:VAL:VOLT.

· *RST Condition: Stored calibration constants are unchanged.

Usage CAL:STORE ADC Store cal constants in non-volatile memory
after A/D calibration

CAL:STORE TARE Store channel offsets in non-volatile memory
after channel tare

Command Sequence Storing A/D cal constants

perform complete A/D calibration, then...

CAL:STORE ADC

Storing channel tare (offset) values

CAL:TARE <ch_list> To correct channel offsets

CAL:STORE TARE Optional depending on necessity of long
term storage

CALibration

Chapter 6 VT1415A Command Reference 185

CALibration:TARE

CALibration:TARE (@<ch_list>) measures offset (or tare) voltage present on the
channels specified and stores the value in on-board RAM as a calibration constant
for those channels. Future measurements made with these channels will be
compensated by the amount of the tare value. Use CAL:TARE to compensate for
voltage offsets in system wiring and residual sensor offsets. Where tare values need
to be retained for long periods, they can be stored in the module’s Flash Memory
(Electrically Erasable Programmable Read Only Memory) by executing the
CAL:STORe TARE command.
For more information see Compensating for System Offsets on page 102.

Note for

Thermocouples

· Do not use CAL:TARE on field wiring that is made up of thermocouple wire. The
voltage a thermocouple wire pair generates cannot be removed by introducing a
short anywhere between its junction and its connection to an isothermal panel
(either the VT1415A’s Terminal Module or a remote isothermal reference block).
Thermal voltage is generated along the entire length of a thermocouple pair where
there is any temperature gradient along that length. To CAL:TARE thermocouple
wire this way would introduce an unwanted offset in the voltage/temperature
relationship for that channel. If a thermocouple wire pair is inadvertently
"CAL:TARE'd," use CAL:TARE:RESET to reset all tare constants to zero.

· Do use CAL:TARE to compensate wiring offsets (copper wire, not thermocouple
wire) between the VT1415A and a remote thermocouple reference block.
Disconnect the thermocouples and introduce copper shorting wires between each
channel’s HI and LO, then execute CAL:TARE for these channels.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

ch_list channel list (string) 100 - 163 none

Comments · CAL:TARE also performs the equivalent of a *CAL? operation. This operation
uses the Tare constants to set a DAC which will remove each channel offset as
“seen” by the module’s A/D converter. As an example, assume that the system
wiring to channel 0 generates a +0.1 volt offset with 0 volts (a short) applied at
the Unit Under Test (UUT). Before CAL:TARE the module would return a
reading of 0.1 volts for channel 0. After CAL:TARE (@100), the module will
return a reading of 0 volts with a short applied at the UUT and the system wiring
offset will be removed from all measurements of the signal to channel 0.

· Set Amplifier/Filter SCP gain before CAL:TARE. For best accuracy, choose the
gain that will be used during measurements. If the range or gain setup later is
changed later, be sure to perform another *CAL?.

CALibration

186 VT1415A Command Reference Chapter 6

· If Open TransducerDetect (OTD) is enabled when CAL:TARE is executed, the
module will disable OTD, wait 1 minute to allow channels to settle, perform the
calibration, and then re-enable OTD. If a program turns off OTD before
executing CAL:TARE, it should also wait 1 minute for settling.

· The maximum voltage that CAL:TARE can compensate for is dependent on the
range chosen and SCP gain setting. The following table lists these values.

Maximum CAL:TARE Offsets

A/D range
±V(F.Scale)

Offset V
Gain x1

Offset V
Gain x8

Offset V
Gain x16

Offset V
Gain x64

16
4
1

0.25
0.0625

3.2213
0.82101
0.23061
0.07581
0.03792

0.40104
0.10101
0.02721
0.00786
0.00312

0.20009
0.05007
0.01317
0.00349
0.00112

0.04970
0.01220
0.00297
0.00055

n/a

· Channel offsets are compensated by the CAL:TARE command even when not
stored in the Flash Memory. There is no need to use the CAL:STORE TARE
command for channels which are re-calibrated frequently.

· The VT1415A’s Flash Memory has a finite lifetime of approximately ten
thousand write cycles (unlimited read cycles). While executing CAL:STOR
once every day would not exceed the lifetime of the Flash Memory for
approximately 27 years, an application that stored constants many times each
day would unnecessarily shorten the Flash Memory’s lifetime. See Comments
below.

· Executing CAL:TARE sets the Calibrating bit (bit 0) in Operation Status Group.
Executing CAL:TARE? resets the bit.

· When Accepted: Not while INITiated

· Related Commands: CAL:TARE?, CAL:STOR TARE

· *RST Condition: Channel offsets are not affected by *RST.

Command Sequence CAL:TARE <ch_list> To correct channel offsets

CAL:TARE? To return the success flag from the
CAL:TARE operation

CAL:STORE TARE Optional depending on necessity of long
term storage

CALibration:TARE:RESet

CALibration:TARE:RESet resets the tare calibration constants to zero for all 64
channels. Executing CAL:TARE:RES affects the tare cal constants in RAM only.
To reset the tare cal constants in Flash Memory, execute CAL:TARE:RES and then
execute CAL:STORE TARE.

Command Sequence CAL:TARE:RESET to reset channel offsets

CAL:STORE TARE Optional if necessary to reset tare cal
constants in Flash Memory.

CALibration

Chapter 6 VT1415A Command Reference 187

CALibration:TARE?

CALibration:TARE? Returns a value to indicate the success of the last
CAL:TARE operation. CAL:TARE? returns the value only after the CAL:TARE
operation is complete.

· Returned Value:

Value Meaning Further Action

0 Cal OK None

-1 Cal Error Query the Error Queue (SYST:ERR?)
See Error Messages in Appendix B.

Also run *TST?

-2 No results available Perform CAL:TARE
before CAL:TARE?

The C-SCPI type for this returned value is int16.

· Executing CAL:TARE sets the Calibrating bit (bit 0) in Operation Status Group.
Executing CAL:TARE? resets the bit.

· Related Commands: CAL:STOR TARE

Command Sequence CAL:TARE <ch_list> to correct channel offsets

CAL:TARE? to return the success flag from the
CAL:TARE operation

CAL:STORE TARE Optional depending on necessity of long
term storage

CALibration:VALue:RESistance

CALibration:VALue:RESistance <ref_ohms> sends the just-measured value of
the on-board reference resistor to the module for A/D calibration.

Parameters

Parameter
Name

Parameter
Type

Range of
Value

Default
Units

ref_ohms numeric (float32) 7,500 ± 5% ohms

Comments · The <ref_ohms> parameter must be within 5% of the nominal reference resistor
value (7,500 W) and may be specified in W (kohm).

· A four-wire measurement of the resistor can be made with an external
multimeter connected to the H Cal, L Cal, H ohm, and L ohm terminals on the
Terminal Module or the V H, V L, W H, and W L terminals on the Cal Bus
connector.

· Use the CAL:CONF:RES command to configure the reference resistor for
measurement at the Calibration Bus connector.

CALibration

188 VT1415A Command Reference Chapter 6

· When Accepted: Not while INITiated.

· Related Commands: CAL:CONF:RES, CAL:STORE ADC.

Command Sequence CAL:CONF:RES

(now measure ref resistor with external DMM)

CAL:VAL:RES <measured value> Send measured value to module

CALibration:VALue:VOLTage

CALibration:VALue:VOLTage <ref_volts> sends the value of the last-measured
dc reference source to the module for A/D calibration.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

ref_volts numeric (float32) Must be within 10% of range nominal. volts

Comments · The value sent must be for the currently configured range and output (zero or
full scale) as set by the previous CAL:CONF:VOLT <range>, ZERO |
FSCale command. Full scale values must be within 10% of 0.0625, 0.25, 1, 4,
or 10 (the voltage reference provides 10 V dc on the 16 V range).

· The <ref_volts> parameter may be specified in millivolts (mv).

· A measurement of the source voltage can be made with an external multimeter
connected to the H Cal and L Cal terminals on the Terminal Module or the V H
and V L terminals on the Cal Bus connector.

· Use the CAL:CONF:VOLT command to configure the on-board voltage source
for measurement at the Calibration Bus connector.

· When Accepted: Not while INITiated.

· Related Commands: CAL:CONF:VOLT, CAL:STORE ADC.

Command Sequence CAL:CONF:VOLTAGE 4,FSCALE

*OPC? Wait for operation to complete

enter statement

(now measure voltage with external DMM)

CAL:VAL:VOLT <measured value> Send measured value to module

CALibration

Chapter 6 VT1415A Command Reference 189

CALibration:ZERO?

CALibration:ZERO? corrects Analog to Digital converter offset for any drift since
the last *CAL? or CAL:ZERO? command was executed. The offset calibration
takes about 5 seconds and should be done as often as the control set up allows.

Comments · The CAL:ZERO? command only corrects for A/D offset drift (zero). Use the
*CAL? common command to perform on-line calibration of channels as well as
A/D offset. *CAL? performs gain and offset correction of the A/D and each
channel with an analog SCP installed (both input and output).

· Returned Value:

Value Meaning Further Action

0 Cal OK None

-1 Cal Error Query the Error Queue (SYST:ERR?).
See Error Messages in Appendix B.

The C-SCPI type for this returned value is int16.

· Executing this command does not alter the module’s programmed state
(function, range etc.).

· Related Commands: *CAL?

· *RST Condition: A/D offset performed

Usage CAL:ZERO?

enter statement here returns 0 or -1

CALibration

190 VT1415A Command Reference Chapter 6

DIAGnostic

The DIAGnostic subsystem allows for special operations to be performed that are
not standard in the SCPI language. This includes checking the current revision of
the Control Processor’s firmware and that it has been properly loaded into Flash
Memory.

Subsystem Syntax DIAGnostic
:CALibration

:SETup
:MODE 0 | 1
:MODE?

:TARe
[:OTD]

:MODE 0 | 1
:MODE?

:CHECksum?
:CUSTom

:LINear <table_range>,<table_block>,(@<ch_list>)
:PIECewise <table_range>,<table_block>,(@<ch_list>)
:REFerence

:TEMPerature
:IEEE 1 | 0
:IEEE?
:INTerrupt

[:LINe] <intr_line>
[:LINe]?

:OTDetect
[:STATe] 1 | 0 | ON | OFF,(@<ch_list>)
[:STATe]? (@<channel>)

:QUERy
:SCPREAD? <reg_addr>

:VERSion?

DIAGnostic:CALibration:SETup[:MODE]

DIAGnostic:CALibration:SETup[:MODE] <mode> sets the type of calibration
to use for analog output SCPs like the VT1531A and VT1532A when *CAL? or
CAL:SET are executed.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

mode boolean (uint 16) 0 | 1 volts

Comments

DIAGnostic

Chapter 6 VT1415A Command Reference 191

· When <mode> is set to 1 (the *RST Default), channels are calibrated using the
Least Squares Fit method to provide the minimum error overall (over the entire
output range). When <mode> is 0, channels are calibrated to provide the
minimum error at their zero point. See the SCPs User’s Manual for its accuracy
specifications using each mode.

· Related Commands: *CAL?, CAL:SET, DIAG:CAL:SET:MODE?

· *RST Condition: DIAG:CAL:SET:MODE 1

Usage set analog DAC SCP cal mode for best zero accuracy

DIAG:CAL:SET:MODE 0 Set mode for best zero cal.

*CAL? Start channel calibration.

DIAGnostic:CALibration:SETup[:MODE]?

DIAGnostic:CALibration:SETup[:MODE]? returns the currently set calibration
mode for analog output DAC SCPs.

Comments · Returns a 1 when channels are calibrated using the Least Squares Fit method to
provide the minimum error overall (over the entire output range). Returns a 0
when channels are calibrated to provide the minimum error at their zero point.
See the SCPs User’s Manual for its accuracy specifications using each mode.
The C-SCPI type is int16.

· Related Commands: DIAG:CAL:SET:MOD, *CAL?, CAL:SET.

· *RST Condition: DIAG:CAL:SET:MODE 1.

DIAGnostic:CALibration:TARE[:OTDetect]:MODE

DIAGnostic:CALibration:TARE[:OTDetect]:MODE <mode> sets whether
Open Transducer Detect current will be turned off or left on (the default mode)
during the CAL:TARE operation.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

mode boolean (uint 16) 0 | 1 volts

Comments · When <mode> is set to 0 (the *RST Default), channels are tare calibrated with
their OTD current off. When <mode> is 1, channels that have their OTD current
on (DIAGnostic:OTDetect ON,(@<ch_list>)) are tare calibrated with their
OTD current left on.

· By default (*RST), the CALibration:TARE? command will calibrate all
channels with the OTD circuitry disabled. This is done for two reasons: first,
most users do not leave OTD enabled while taking readings and second, the
CALibration:TARE? operation takes much longer with OTD enabled.

DIAGnostic

192 VT1415A Command Reference Chapter 6

However, for users who intend to take readings with OTD enabled, setting
DIAG:CAL:TARE:OTD:MODE to 1, will force the CAL:TARE? command to
perform calibration with OTD enabled on channels so specified by the user with
the DIAG:OTD command.

· Related Commands: *CAL?, CAL:SET, DIAG:CAL:SET:MODE?

· *RST Condition: DIAG:CAL:TARE:MODE 0.

Usage configure OTD on during CAL:TARE

DIAG:CAL:TARE:MODE 1 Set mode for OTD to stay on.

CAL:TARE? Start channel tare cal.

DIAGnostic:CALibration:TARE[:OTDetect]:MODE?

DIAGnostic:CALibration:TARE[:OTDetect]:MODE? returns the currently set
mode for controlling Open Transducer Detect current while performing
CAL:TARE? operation.

Comments · Returns a 0 when OTD current will be turned off during CAL:TARE?. Returns
1 when OTD current will be left on during CAL:TARE? operation. The C-SCPI
type is int16.

· Related Commands: DIAG:CAL:TARE:MOD, DIAG:OTD, CAL:TARE?

· *RST Condition: DIAG:CAL:TARE:MODE 0.

DIAGnostic:CHECksum?

DIAGnostic:CHECksum? performs a checksum operation on Flash Memory. A
returned value of 1 indicates that Flash memory contents are correct. A returned
value of 0 indicates that the Flash Memory is corrupted or has been erased.

Comments · Returned Value: Returns 1 or 0. The C-SCPI type is int16.

Usage DIAG:CHEC? Checksum Flash Memory, return 1 for OK,
0 for corrupted.

DIAGnostic:CUSTom:LINear

DIAGnostic:CUSTom:LINear <table_range>,<table_block>, (@<ch_list>)
downloads a custom linear Engineering Unit Conversion table (in <table_block>) to
the VT1415A. Contact a VXI Technology System Engineer for more information on
Custom Engineering Unit Conversion for specific applications.

DIAGnostic

Chapter 6 VT1415A Command Reference 193

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

table_range numeric (float32) 0.015625 | 0.03125 | 0.0625 | 0.125 |
0.25 | 0.5 | 1 | 2 | 4 | 8 | 16 | 32 | 64

volts

table_block definite length
block data

See comments. none

ch_list channel list (string) 100 - 163 none

Comments · The <table_block> parameter is a block of 8 bytes that define 4, 16-bit values.
SCPI requires that <table_block> include the definite length block data header.
C-SCPI adds the header automatically.

· The <table_range> parameter specifies the range of voltage that the table covers
(from -<table_range> to +<table_range>). The value specified must be within
5% of one of the nominal values from the table above.

· The <ch_list> parameter specifies which channels may use this custom EU
table.

· Related Commands: [SENSe:]FUNCtion:CUSTom.

· *RST Condition: All custom EU tables erased.

Usage program puts table constants into array table_block

DIAG:CUST:LIN table_block,(@116:123) send table to VT1415A for chs 16-23

SENS:FUNC:CUST:LIN 1,1,(@116:123) link custom EU with chs 16-23

INITiate then TRIGger module

DIAGnostic:CUSTom:PIECewise

DIAGnostic:CUSTom:PIECewise <table_range>,<table_block>, (@<ch_list>)
downloads a custom piece-wise Engineering Unit Conversion table (in
<table_block>) to the VT1415A. Contact a VXI Technology System Engineer for
more information on Custom Engineering Unit Conversion for specific applications.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

table_range numeric (float32) 0.015625 | 0.03125 | 0.0625 | 0.125 |
0.25 | 0.5 | 1 | 2 | 4 | 8 | 16 | 32 | 64

volts

table_block definite length
block data

See comments. none

ch_list channel list (string) 100 - 163 none

Comments · The <table_block> parameter is a block of 1,024 bytes that define 512 16-bit
values. SCPI requires that <table_block> include the definite length block data
header. C-SCPI adds the header automatically.

194 VT1415A Command Reference Chapter 6

· The <table_range> parameter specifies the range of voltage that the table covers
(from -<table_range> to +<table_range>).

· The <ch_list> parameter specifies which channels may use this custom EU
table.

· Related Commands: [SENSe:]FUNCtion:CUSTom

· *RST Condition: All custom EU tables erased.

Usage program puts table constants into array table_block

DIAG:CUST:PIEC table_block,(@124:131) Send table for chs 24-31 to VT1415A.

SENS:FUNC:CUST:PIEC 1,1,(@124:131) Link custom EU with chs 24-31.

INITiate then TRIGger module

DIAGnostic:CUSTom:REFerence:TEMPerature

DIAGnostic:CUSTom:REFerence:TEMPerature extracts the current Reference
Temperature Register Contents, converts it to 32-bit floating point format and sends
it to the FIFO. This command is used to verify that the reference temperature is as
expected after measuring it using a custom reference temperature EU conversion
table.

Usage The program must have EU table values stored in <table_block>.

download the new reference EU table

DIAG:CUST:PIECEWISE <table_range>,<table_block>,(@<ch_list>)

designate channel as reference

SENS:FUNC:CUST:REF <range>,(@<ch_list>)

set up scan list sequence (ch 0 in this case)

Now run the algorithm that uses the custom reference conversion table

dump reference temp register to FIFO

DIAG:CUST:REF:TEMP

read the diagnostic reference temperature value

SENS:DATA:FIFO?

DIAGnostic:IEEE

DIAGnostic:IEEE <mode> enables (1) or disables (0) IEEE-754 NAN (Not A
Number) and ±INF value outputs. This command was created for the Agilent VEE
platform.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

mode boolean (uint 16) 0 | 1 volts

DIAGnostic

Chapter 6 VT1415A Command Reference 195

Comments · When <mode> is set to 1, the module can return ±INF and NAN values
according to the IEEE-754 standard. When <mode> is set to 0, the module
returns values as ±9.9E37 for INF and 9.91E37 for NAN.

· Related Commands: DIAG:IEEE?

· *RST Condition: DIAG:IEEE 1

Usage Set IEEE mode

DIAG:IEEE 1 INF values returned in IEEE standard

DIAGnostic:IEEE?

DIAGnostic:IEEE? returns the currently set IEEE mode.

Comments · The C-SCPI type is int16.

· Related Commands: DIAG:IEEE

· *RST Condition: DIAG:IEEE 1

DIAGnostic:INTerrupt[:LINe]

DIAGnostic:INTerrupt[:LINe] <intr_line> sets the VXIbus interrupt line the
module will use.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

intr_line numeric (int16) 0 through 7 none

Comments · Related Commands: DIAG:INT:LINE?

· Power-on and *RST Condition: DIAG:INT:LINE 1

Usage DIAG:INT:LINE 5 Module will interrupt on VXIbus interrupt
line 5.

DIAGnostic:INTerrupt[:LINe]?

· PACKed,64 returns the same values as REAL,64 except for Not-a-Number
(NaN), IEEE +INF, and IEEE -INF. The NaN, IEEE +INF, and IEEE -INF
values returned by PACKed,64 are in a form compatible with HP Workstation
BASIC and HP BASIC/UX. Refer to the FORMat command for the actual
values for NaN, +INF, and -INF.

· ASCii is the default format.

DIAGnostic

196 VT1415A Command Reference Chapter 6

· ASCII readings are returned in the form ±1.234567E±123. For example
13.325 volts would be +1.3325000E+001. Each reading is followed by a comma
(,). A line feed (LF) and End-Or-Identify (EOI) follow the last reading.

· Related Commands: MEMory Subsystem, FORMat[:DATA]

· *RST Condition: MEMORY:VME:ADDRESS 240000;
MEMORY:VME:STATE OFF; MEMORY:VME:SIZE 0

DIAGnostic

Chapter 6 VT1415A Command Reference 197

Use Sequence MEM:VME:ADDR #H300000

MEM:VME:SIZE #H100000 1 megabyte (MB) or 262,144 readings.

MEM:VME:STAT ON
*

 * (set up VT1415A for scanning)
 *

TRIG:SOUR IMM Let unit trigger on INIT.

INIT Program execution remains here until VME
memory is full or the VT1415A has stopped
taking readings.

FORM REAL,64 Affects only the return of data.

FETCH?

NOTE When using the MEM subsystem, the module must be triggered before executing
the INIT command (as shown above) unless an external trigger (EXT trigger) is
being used. When using EXT trigger, the trigger can occur at any time.

DIAGnostic

198 VT1415A Command Reference Chapter 6

FORMat

The FORMat subsystem provides commands to set and query the response data
format of readings returned using the [SENSe:]DATA:FIFO:…? commands.

Subsystem Syntax FOR Mat
[:DATA] <for mat>[,<size>]
[:DATA]?

FORMat[:DATA]

FORMat[:DATA] <format>[,<size>] sets the format for data returned using the

[SENSe:]DATA:FIFO:¼?, [SENSe:]DATA:CVTable and FETCh? commands.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

format discrete (string) REAL | ASCii | PACKed none

size numeric for ASCii, 7
for REAL, 32 | 64
for PACKed, 64

none

Comments · The REAL format is IEEE-754 Floating Point representation.

· REAL, 32 provides the highest data transfer performance since no format
conversion step is placed between reading and returning the data. The default
<size> for the REAL format is 32 bits. Also see DIAG:IEEE command.

· PACKed, 64 returns the same values as REAL, 64 except for Not-a-Number
(NaN), IEEE +INF, and IEEE -INF. The NaN, IEEE +INF, and IEEE -INF
values returned by PACKed,64 are in a form compatible with HP Workstation
BASIC and HP BASIC/UX (see table on following page).

· REAL 32, REAL 64, and PACK 64, readings are returned in the
IEEE-488.2-1987 Arbitrary Block Data format. The Block Data may be either
Definite Length or Indefinite Length depending on the data query command
executed. These data return formats are explained in “Arbitrary Block Program
Data” on page 156 of this chapter. For REAL 32, readings are 4 bytes in length
(C-SCPI type is float32 array). For REAL 64 and PACK, 64, readings are
8 bytes in length (C-SCPI type is float64 array).

· ASCii is the default format. ASCII readings are returned in the form
±1.234567E±123. For example 13.325 volts would be +1.3325000E+001. Each
reading is followed by a comma (,). A line feed (LF) and End-Or-Identify (EOI)
follow the last reading (C-SCPI type is string array).

FORMat

Chapter 6 VT1415A Command Reference 199

NOTE *TST? leaves the instrument in its power-on, reset state. This means that the ASC,7
data format is set even if something else was set before executing *TST?. If the
FIFO must be read for test information, set the format after *TST? and before
reading the FIFO.

· Related Commands: [SENSe:]DATA:FIFO:¼?, [SENSe:]DATA:CVTable?,
MEMory subsystem and FETCh? Also, see how DIAG:IEEE can modify
REAL,32 returned values.

· *RST Condition: ASCII, 7

· After *RST/Power-on, each channel location in the CVT contains the IEEE-754
value “Not-a-number” (NaN). Channel readings which are a positive
over-voltage return IEEE +INF and a negative over-voltage return IEEE -INF.
The NaN, +INF, and -INF values for each format are shown in the following
table.

 Format IEEE Term Value Meaning

ASCii +INF +9.9E37 Positive Overload

-INF -9.9E37 Negative Overload

NaN +9.91E37 No Reading

REAL,32 +INF 7F80000016 Positive Overload

-INF FF80000016 Negative Overload

NaN 7FFFFFFF16 No Reading

REAL,64 +INF 7FF000...0016 Positive Overload

-INF FFF000...0016 Negative Overload

NaN 7FFF...FF16 No Reading

PACKed,64 +INF 47D2 9EAD 3677 AF6F16

(+9.0E3710)
Positive Overload

-INF C7D2 9EAD 3677 AF6F16

(-9.0E3710)
Negative Overload

NaN 47D2 A37D CED4 614316

(+9.91E3710)
No Reading

Usage FORMAT REAL Set format to IEEE 32-bit Floating Point.

FORM REAL, 64 Set format to IEEE 64-bit Floating Point.

FORMAT ASCII, 7 Set format to 7-bit ASCII.

FORMat

200 VT1415A Command Reference Chapter 6

FORMat[:DATA]?

FORMat[:DATA]? returns the currently set response data format for readings.

Comments · Returned Value: Returns REAL, +32 | REAL, +64 | PACK, +64 | ASC, +7.
The C-SCPI type is string, int16.

· Related Commands: FORMAT

· *RST Condition: ASCII, 7

Usage FORMAT? Returns REAL, +32 | REAL, +64 | PACK,
+64 | ASC, +7

FORMat

Chapter 6 VT1415A Command Reference 201

INITiate

The INITiate command subsystem moves the VT1415A from the "Trigger Idle"
state to the "Waiting For Trigger" state. When initiated, the instrument is ready to
receive one (:IMMediate) or more (depending on TRIG:COUNT) trigger events. On
each trigger, the module will perform one control cycle which includes reading
analog and digital input channels (Input Phase), executing all defined algorithms
(Calculate Phase), and updating output channels (Output Phase). See the TRIGger
subsystem to specify the trigger source and count.

Subsystem Syntax INITiate
[:IMMediate]

INITiate[:IMMediate]

INITiate[:IMMediate] changes the trigger system from the "Idle" state to the "Wait
For Trigger" state. When triggered, one or more (depending on TRIGger:COUNt)
trigger cycles occur and the instrument returns to the "Trigger Idle" state.

Comments · INIT:IMM clears the FIFO and Current Value Table.

· If a trigger event is received before the instrument is Initiated, a -211 “Trigger
ignored” error is generated.

· If another trigger event is received before the instrument has completed the
current trigger cycle (measurement scan), the Questionable Data Status bit 9 is
set and a +3012 “Trigger too fast” error is generated.

· Sending INIT while the system is still in the Wait for Trigger state (already
INITiated) will cause an error -213,"Init ignored."

· Sending the ABORt command send the trigger system to the Trigger Idle state
when the current input-calculate-output cycle is completed.

· If updates are pending, they are made prior to beginning the Input phase.

· When Accepted: Not while INITiated.

· Related Commands: ABORt, CONFigure, TRIGger.

· *RST Condition: Trigger system is in the Idle state.

Usage INIT Both versions same function.

INITIATE:IMMEDIATE

INITiate

202 VT1415A Command Reference Chapter 6

INPut

The INPut subsystem controls configuration of programmable input Signal
Conditioning Plug-Ons (SCPs).

Subsystem Syntax INPut
:FILTer

[:LPASs]
:FREQuency <cutoff_freq>,(@<ch_list>)
:FREQuency? (@<channel>)
[:STATe] 1 | 0 | ON | OFF,(@<channel>)
[:STATe]? (@<channel>)

:GAIN <chan_gain>,(@<ch_list>)
:GAIN? (@<channel>)
:LOW <wvolt_type>,(@<ch_list>)
:LOW? (@<channel>)
:POLarity NORMal | INVerted,(@<ch_list>)
:POLarity? (@<channel>)

INPut:FILTer[:LPASs]:FREQuency

INPut:FILTer[:LPASs]:FREQuency <cutoff_freq>,(@<ch_list>) sets the cutoff
frequency of the filter on the specified channels.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

cutoff_freq numeric (float32)
(string)

see comment |
MIN | MAX

Hz

ch_list channel list (string) 100 - 163 none

Comments · <cutoff_freq> may be specified in kilohertz (khz). A programmable Filter SCP
has a choice of several discrete cutoff frequencies. The cutoff frequency set will
be the one closest to the value specified by <cutoff_freq>. Refer to Chapter 6
for specific information on the SCP being programmed.

· Sending MAX for the <cutoff_freq> selects the SCP’s highest cutoff frequency.
Sending MIN for the <cutoff_freq> selects the SCP’s lowest cutoff frequency.
To disable filtering (the “pass through” mode), execute the INP:FILT:STATE
OFF command.

· Sending a value greater than the SCP’s highest cutoff frequency or less than the
SCP’s lowest cutoff frequency generates a -222 “Data out of range” error.

· When Accepted: Not while INITiated

· Related Commands: INP:FILT:FREQ?, INP:FILT:STAT ON | OFF

· *RST Condition: set to MIN

INPut

Chapter 6 VT1415A Command Reference 203

Usage INP:FILT:FREQ 100,(@100:119) Set cutoff frequency of 100 Hz for first 20
channels

INPUT:FILTER:FREQ 2,(@155) Set cutoff frequency of 2 Hz for channel 55

INPut:FILTer[:LPASs]:FREQuency?

INPut:FILTer[:LPASs]:FREQuency? (@<channel>) returns the cutoff
frequency currently set for <channel>. Non-programmable SCP channels may be
queried to determine their fixed cutoff frequency. If the channel is not on an input
SCP, the query will return zero.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

channel channel list (string) 100 - 163 none

Comments · <channel> must specify a single channel only.

· This command is for programmable filter SCPs only.

· Returned Value: Numeric value of Hz as set by the INP:FILT:FREQ
command. The C-SCPI type is float32.

· When Accepted: Not while INITiated

· Related Commands: INP:FILT:LPAS:FREQ, INP:FILT:STATE

· *RST Condition: MIN

Usage INPUT:FILTER:LPASS:FREQUENCY? (@155) Check cutoff freq on channel 55

INP:FILT:FREQ? (@100) Check cutoff freq on channel 0

INPut:FILTer[:LPASs][:STATe]

INPut:FILTer[:LPASs][:STATe] <enable>,(@<ch_list>) enables or disables a
programmable filter SCP channel. When disabled (enable=OFF), these channels are
in their “pass through” mode and provide no filtering. When re-enabled
(enable=ON), the SCP channel reverts to its previously programmed setting.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

enable boolean (uint16) 1 | 0 | ON | OFF none

ch_list channel list (string) 100 - 163 none

Comments · If the SCP has not yet been programmed, ON enables the SCP’s default cutoff
frequency.

204 VT1415A Command Reference Chapter 6

· When Accepted: Not while INITiated

· *RST Condition: ON

Usage INPUT:FILTER:STATE ON,(@115,117) Channels 115 and 117 return to previously
set (or default) cutoff frequency

INP:FILT OFF,(@100:115) Set channels 0 - 15 to “pass-through” state

INPut:FILTer[:LPASs][:STATe]?

INPut:FILTer[LPASs][:STATe]? (@<channel>) returns the currently set state of
filtering for the specified channel. If the channel is not on an input SCP, the query
will return zero.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

channel channel list (string) 100 - 163 none

Comments · Returned Value: Numeric value either 0 (off or “pass-through”) or 1 (on). The
C-SCPI type is int16.

· <channel> must specify a single channel only.

Usage INPUT:FILTER:LPASS:STATE? (@115) Enter statement returns either 0 or 1

INP:FILT? (@115) Same as above

INPut:GAIN

INPut:GAIN <gain>,(@<ch_list>) sets the channel gain on programmable
amplifier Signal Conditioning Plug-Ons.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

gain numeric (float32)
discrete (string)

see comment |
MIN | MAX

none

ch_list channel list (string) 100 - 163 none

Comments · A programmable amplifier SCP has a choice of several discrete gain settings.
The gain set will be the one closest to the value specified by <gain>. Refer to
the SCP manual for specific information on the SCP being programmed.
Sending MAX will program the highest gain available with the SCP installed.
Sending MIN will program the lowest gain.

· Sending a value for <gain> that is greater than the highest or less than the
lowest setting allowable for the SCP will generate a -222 “Data out of range”
error.

INPut

Chapter 6 VT1415A Command Reference 205

· When Accepted: Not while INITiated

· Related Commands: INP:GAIN?

· *RST Condition: gain set to MIN

Usage INP:GAIN 8,(@100:119) Set gain of 8 for first 20 channels

INPUT:GAIN 64,(@155) Set gain of 64 for channel 55

INPut:GAIN?

INPut:GAIN? (@<channel>) returns the gain currently set for <channel>. If the
channel is not on an input SCP, the query will return zero.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

channel channel list (string) 100 - 163 none

Comments · <channel> must specify a single channel only.

· If the channel specified does not have a programmable amplifier, INP:GAIN?
will return the nominal as-designed gain for that channel.

· Returned Value: Numeric value as set by the INP:GAIN command. The
C-SCPI type is float32.

· When Accepted: Not while INITiated

· Related Commands: INP:GAIN

· *RST Condition: gain set to 1

Usage INPUT:GAIN? (@105) Check gain on channel 5

INP:GAIN? (@100) Check gain on channel 0

INPut:LOW

INPut:LOW <wvolt_type>,(@<ch_list>) controls the connection of input LO at a
Strain Bridge SCP channel specified by <ch_list>. LO can be connected to the
Wagner Voltage ground or left floating.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

wvolt_type discrete (string) FLOat | WVOLtage none

ch_list channel list (string) 100 - 163 none

206 VT1415A Command Reference Chapter 6

Comments · Related Commands: INP:LOW?

· *RST Condition: INP:LOW FLOAT (all Option 21 channels)

Usage INP:LOW WVOL (@100:103,116:119) connect LO of channels 0 through 3 and 16
through 19 to Wagner Ground.

INPut:LOW?

INPut:LOW? (@<channel>) returns the LO input configuration for the channel
specified by <channel>.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

channel channel list (string) 100 - 163 none

Comments · The <channel> parameter must specify a single channel only.

· Returned Value: Returns FLO or WV. The C-SCPI type is string.

· Related Commands: INP:LOW

Usage INP:LOW? (@103) enter statement will return either FLO or
WV for channel 3

INPut:POLarity

INPut:POLarity <mode>,<ch_list> sets logical input polarity on a digital SCP
channel.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

mode discrete (string) NORMal | INVerted none

ch_list string 100 - 163 none

Comments · If the channels specified are on an SCP that doesn’t support this function, an
error will be generated. See the SCP’s User’s Manual to determine its
capabilities.

· Related Commands: for output sense; SOURce:PULSe:POLarity

· *RST Condition: INP:POL NORM for all digital SCP channels.

Usage INP:POL INV,(@140:143) invert first 4 channels on SCP at SCP
position 5. Channels 40 through 43

INPut

Chapter 6 VT1415A Command Reference 207

INPut:POLarity?

INPut:POLarity? <channel> returns the logical input polarity on a digital SCP
channel.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

channel string 100 - 163 none

Comments · <channel> must specify a single channel.

· If the channel specified is on an SCP that doesn’t support this function, an error
will be generated. See the SCP’s User’s Manual to determine its capabilities.

· Returned Value: returns “NORM” or “INV.” The type is string.

INPut

208 VT1415A Command Reference Chapter 6

MEMory

The MEMory subsystem allows using VME memory as an additional reading
storage buffer.

Subsystem Syntax MEM ory
:VME

:AD DRess <A24_ad dress>
:AD DRess?
:SIZE <mem_size>
:SIZE?
:STATe 1 | 0 | ON | OFF
:STATe?

NOTE This subsystem is only available in systems using an Agilent/HP E1405B/06A
command module.

Use Sequence *RST

MEM:VME:ADDR #H300000

MEM:VME:SIZE #H100000 1 MB or 262,144 readings

MEM:VME:STAT ON
*

 * (set up VT1415A for scanning)
 *

TRIG:SOUR IMM let unit trigger on INIT

INIT

*OPC? program execution remains here until VME
memory is full or the VT1415A has stopped
taking readings

FORM REAL,64 affects only the return of data

FETCH? return data from VME memory

NOTE When using the MEM subsystem, the module must be triggered before executing
the INIT command (as shown above) unless an external trigger (EXT trigger) is
being used. When using EXT trigger, the trigger can occur at any time.

Chapter 6 VT1415A Command Reference 209

MEMory:VME:ADDRess

MEMory:VME:ADDRess <A24_address> sets the A24 address of the VME
memory card to be used as additional reading storage.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

A24_address numeric valid A24 address none

Comments · This command is only available in systems using an Agilent/HP E1405B/06A
command module.

· The default (if MEM:VME:ADDR not executed) is 24000016.

· <A24_address> may be specified in decimal, hex (#H), octal (#Q) or binary
(#B).

· Related Commands: MEMory subsystem, FORMat and FETCH?

· *RST Condition: VME memory address starts at 20000016. When using an
Agilent/HP E1405B/06A command module, the first VT1415A occupies
20000016 - 23FFFF16.

Usage MEM:VME:ADDR #H400000 Set the address for the VME memory card to
be used as reading storage

MEMory:VME:ADDRess?

MEMory:VME:ADDRess? returns the address specified for the VME memory
card used for reading storage.

Comments · Returned Value: numeric.

· This command is only available in systems using an Agilent/HP E1405B/06A
command module.

· Related Commands: MEMory subsystem, , FORMat, and FETCH?

Usage MEM:VME:ADDR? Returns the address of the VME memory
card.

MEMory:VME:SIZE

MEMory:VME:SIZE <mem_size> Specifies the number of bytes of VME
memory to allocate for additional reading storage.

210 VT1415A Command Reference Chapter 6

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

mem_size numeric to limit of available VME memory none

Comments · This command is only available in systems using an Agilent/HP E1405B/06A
command module.

· <mem_size> may be specified in decimal, hex (#H), octal (#Q), or binary(#B).

· <mem_size> should be a multiple of four (4) to accommodate 32-bit readings.

· Related Commands: MEMory subsystem, FORMAT, and FETCH?

· *RST Condition: MEM:VME:SIZE 0

Usage MEM:VME:SIZE 32768 Allocate 32 kilobytes (kB) of VME memory
to reading storage (8,192 readings)

MEMory:VME:SIZE?

MEMory:VME:SIZE? returns the amount (in bytes) of VME memory allocated to
reading storage.

Comments · This command is only available in systems using an Agilent/HP E1405B or
E1406A command module.

· Returned Value: Numeric.

· Related Commands: MEMory subsystem and FETCH?

Usage MEM:VME:SIZE? Returns the number of bytes allocated to
reading storage.

MEMory:VME:STATe

MEMory:VME:STATe <enable> enables or disables use of the VME memory
card as additional reading storage.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

enable boolean (uint16) 1 | 0 | ON | OFF none

Comments · This command is only available in systems using an Agilent/HP E1405B/06A
command module.

· When the VME memory card is enabled, the INIT command does not terminate
until data acquisition stops or VME memory is full.

· Related Commands: Memory subsystem and FETCH?

MEMory

Chapter 6 VT1415A Command Reference 211

· *RST Condition: MEM:VME:STAT OFF

Usage MEMORY:VME:STATE ON enable VME card as reading storage

MEM:VME:STAT 0 Disable VME card as reading storage

MEMory:VME:STATe?

MEMory:VME:STATe? returned value of 0 indicates that VME reading storage is
disabled. Returned value of 1 indicates VME memory is enabled.

Comments · This command is only available in systems using an Agilent/HP E1405B/06A
command module.

· Returned Value: Numeric 1 or 0. C-SCPI type uint16.

· Related Commands: MEMory subsystem and FETCH?

Usage MEM:VME:STAT? Returns 1 for enabled, 0 for disabled

MEMory

212 VT1415A Command Reference Chapter 6

OUTPut

The OUTPut subsystem is involved in programming source SCPs as well as
controlling the state of VXIbus TTLTRG lines 0 through 7.

Subsystem Syntax OUTPut
:CURRent

:AMPLitude <amplitude>,(@<ch_list>)
:AMPLitude? (@<channel>)
[:STATe] 1 | 0 | ON | OFF,(@<ch_list>)
[:STATe]? (@<channel>)

:POLarity NORMal | INVerted,(@<ch_list>)
:POLarity? (@<channel>)
:SHUNt 1 | 0 | ON | OFF,(@<ch_list>)
:SHUNt? (@<channel>)
:TTLTrg

:SOURce TRIGger | FTRigger | SCPlugon | LIMit
:SOURce?

:TTLTrg<n>
[:STATe] 1 | 0 | ON | OFF
[:STATe]?

:TYPE PASSive | ACTive,(@<ch_list>)
:TYPE? (@<channel>)
:VOLTage

 :AMPLitude <amplitude>,(@<ch_list>)
 :AMPLitude? (@<channel>)

OUTPut:CURRent:AMPLitude

OUTPut:CURRent:AMPLitude <amplitude>,(@<ch_list>) sets the VT1505A
Current Source SCP channels specified by <ch_list> to either 488 µA or 30 µA.
This current is typically used for four-wire resistance and resistance temperature
measurements.

NOTE This command does not set current amplitude on SCPs like the VT1532A Current
Output SCP.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

amplitude numeric (float32) MIN | 30E-6 | MAX | 488E-6 ADC

ch_list channel list (string) 100 - 163 none

OUTPut

Chapter 6 VT1415A Command Reference 213

Comments · Select 488E-6 (or MAX) for measuring resistances of less than 8000 W. Select
30E-6 (or MIN) for resistances of 8000 W and above. The <amplitude> may be
specified in µA (ua).

· For resistance temperature measurements ([SENSe:]FUNCtion:TEMPerature)
the Current Source SCP must be set as follows:

Required Current
Amplitude

Temperature Sensor Types and
Subtypes

MAX (488 µA)
MIN (30 µA)

RTD,85 | 92 and THER,2250
THER,5000 | 10000

· When *CAL? is executed, the current sources are calibrated on the range
selected at that time.

· When Accepted: Not while INITiated

· Related Commands: *CAL?, OUTP:CURR:AMPL?

· *RST Condition: MIN

Usage OUTP:CURR:AMPL 488ua,(@116:123) Set Current Source SCP at channels 16
through 23 to 488 µA

OUTP:CURR:AMPL 30E-6,(@105) Set Current Source SCP at channel 5 to
30 µA

OUTPut:CURRent:AMPLitude?

OUTPut:CURRent:AMPLitude? (@<channel>) returns the range setting of the
Current Source SCP channel specified by <channel>.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

channel channel list (string) 100 - 163 none

Comments · <channel> must specify a single channel only.

· If <channel> specifies an SCP which is not a Current Source, a +3007, “Invalid
signal conditioning plug-on” error is generated.

· Returned Value: Numeric value of amplitude set. The C-SCPI type is float32.

· Related Commands: OUTP:CURR:AMPL

Usage OUTP:CURR:AMPLITUDE? (@163) Check SCP current set for channel 63
(returns +3.0E-5 or +4.88E-4)

OUTPut

214 VT1415A Command Reference Chapter 6

OUTPut:CURRent[:STATe]

OUTPut:CURRent[:STATe] <enable>,(@<ch_list>) enables or disables current
source on channels specified in <ch_list>.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

enable boolean (uint16) 1 | 0 | ON | OFF none

ch_list channel list (string) 100 - 163 none

Comments · OUTP:CURR:STAT does not affect a channel’s amplitude setting. A channel
that has been disabled, when re-enabled sources the same current set by the
previous OUTP:CURR:AMPL command.

· OUTP:CURR:STAT is most commonly used to turn off excitation current to
four-wire resistance (and resistance temperature device) circuits during
execution of CAL:TARE for those channels.

· When Accepted: Not while INITiated

· Related Commands: OUTP:CURR:AMPL, CAL:TARE

· *RST Condition: OUTP:CURR OFF (all channels)

Usage OUTP:CURR OFF,(@100,108) turn off current source channels 0 and 8

OUTPut:CURRent[:STATe]?

OUTPut:CURRent[:STATe]? (@<channel>) returns the state of the Current
Source SCP channel specified by <channel>. If the channel is not on a VT1505A
Current Source SCP, the query will return zero.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

channel channel list (string) 100 - 163 none

Comments · <channel> must specify a single channel only.

· Returned Value: returns 1 for enabled, 0 for disabled. C-SCPI type is uint16.

· Related Commands: OUTP:CURR:STATE, OUTP:CURR:AMPL

Usage OUTP:CURR? (@108) query for state of Current SCP channel 8

execute enter statement here enter query value, either 1 or 0

OUTPut

Chapter 6 VT1415A Command Reference 215

OUTPut:POLarity

OUTPut:POLarity <select>,(@<ch_list>) sets the polarity on digital output
channels in <ch_list>.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

select discrete (string) NORMal | INVerted none

ch_list string 100 - 163 none

Comments · If the channels specified do not support this function, an error will be generated.

· Related Commands: INPut:POLarity, OUTPut:POLarity?

· *RST Condition: OUTP:POL NORM for all digital channels

Usage OUTP:POL INV,(@144) invert output logic sense on channel 44

OUTPut:POLarity?

OUTPut:POLarity? (@<channel>) returns the polarity on the digital output
channel in <channel>.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

channel string 100 - 163 none

Comments · <channel> must specify a single channel

· Returned Value: returns one of NORM or INV. The type is string.

OUTPut:SHUNt

OUTPut:SHUNt <enable>,(@<ch_list>) adds shunt resistance to one leg of
bridge on Strain Bridge Completion SCPs. This can be used for diagnostic purposes
and characterization of bridge response.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

enable boolean (uint16) 0 | 1 | ON | OFF none

ch_list channel list (string) 100 - 163 none

216 VT1415A Command Reference Chapter 6

Comments · If <ch_list> specifies a non strain SCP, a 3007 “Invalid signal conditioning
plug-on” error is generated.

· When Accepted: Not while INITiated

· Related Commands: [SENSe:]FUNCtion:STRain¼, [SENSe:]STRain¼

· *RST Condition: OUTP:SHUNT 0 on all Strain SCP channels

Usage OUTP:SHUNT 1,(@116:119) add shunt resistance at channels 16 through
19

OUTPut:SHUNt?

OUTPut:SHUNt? (@<channel>) returns the status of the shunt resistance on the
specified Strain SCP channel.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

channel channel list (string) 100 - 163 none

Comments · <channel> must specify a single channel only.

· If <channel> specifies a non strain SCP, a 3007 “Invalid signal conditioning
plug-on” error is generated.

· Returned Value: Returns 1 or 0. The C-SCPI type is uint16.

· Related Commands: OUTP:SHUNT

Usage OUTPUT:SHUNt? (@116) Check status of shunt resistance on channel
16

OUTPut:TTLTrg:SOURce

OUTPut:TTLTrg:SOURce <trig_source> selects the internal source of the trigger
event that will operate the VXIbus TTLTRG lines.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

trig_source discrete
(string)

ALGorithm | TRIGger | FTRigger | SCPlugon none

OUTPut

Chapter 6 VT1415A Command Reference 217

Comments · The following table explains the possible choices.

Parameter Value Source of Trigger

ALGorithm Generated by the Algorithm Language function
“interrupt()”

FTRigger Generated on the First Trigger of a multiple “counted
scan” (set by TRIG:COUNT <trig_count>)

SCPlugon Generated by a Signal Conditioning Plug-On (SCP). Do
not use this when Sample-and-Hold SCPs are installed.

TRIGger Generated every time a scan is triggered (see
TRIG:SOUR <trig_source>)

· FTRigger (First TRigger) is used to generate a single TTLTRG output when
repeated triggers are being used to make multiple executions of the enabled
algorithms. The TTLTRG line will go low (asserted) at the first trigger event
and stay low through subsequent triggers until the trigger count (as set by
TRIG:COUNT) is exhausted. At this point the TTLTRG line will return to its
high state (de-asserted). This feature can be used to signal when the VT1415A
has started running its control algorithms.

· Related Commands: OUTP:TTLT<n>[:STATE], OUTP:TTLT:SOUR?,
TRIG:SOUR, TRIG:COUNT

· *RST Condition: OUTP:TTLT:SOUR TRIG

Usage OUTP:TTLT:SOUR TRIG toggle TTLTRG line every time module is
triggered (use to trigger other VT1415As)

OUTPut:TTLTrg:SOURce?

OUTPut:TTLTrg:SOURce? returns the current setting for the TTLTRG line
source.

Comments · Returned Value: Discrete, one of; TRIG, FTR, or SCP. C-SCPI type is string.

· Related Commands: OUTP:TTLT:SOUR

Usage OUTP:TTLT:SOUR? enter statement will return on of FTR, SCP
or TRIG

OUTPut:TTLTrg<n>[:STATe]

OUTPut:TTLTrg<n>:STATe <ttltrg_cntrl> specifies which VXIbus TTLTRG
line is enabled to source a trigger signal when the module is triggered. TTLTrg<n>
can specify line 0 through 7. For example, …:TTLTRG4 or TTLT4 for VXIbus
TTLTRG line 4.

OUTPut

218 VT1415A Command Reference Chapter 6

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

ttltrg_cntrl boolean (uint16) 1 | 0 | ON | OFF none

Comments · Only one VXIbus TTLTRG line can be enabled simultaneously.

· When Accepted: Not while INITiated

· Related Commands: ABORT, INIT…, TRIG…

· *RST Condition: OUTPut:TTLTrg<0 through 7> OFF

Usage OUTP:TTLT2 ON Enable TTLTRG2 line to source a trigger

OUTPUT:TTLTRG7:STATE ON Enable TTLTRG7 line to source a trigger

OUTPut:TTLTrg<n>[:STATe]?

OUTPut:TTLTrg<n>[:STATe]? returns the current state for TTLTRG line <n>.

Comments · Returned Value: Returns 1 or 0. The C-SCPI type is int16.

· Related Commands: OUTP:TTLT<n>

Usage OUTP:TTLT2? See if TTLTRG2 line is enabled (returns 1 or
0)

OUTPUT:TTLTRG7:STATE? See if TTLTRG7 line is enabled

OUTPut:TYPE

OUTPut:TYPE <select>,(@<ch_list>) sets the output drive characteristic for
digital SCP channels.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

select discrete (string) PASSive | ACTive seconds

ch_list string 100 - 163 none

Comments · If the channels specified are on an SCP that doesn’t support this function an
error will be generated. See the SCP’s User’s Manual to determine its
capabilities.

· PASSive configures the digital channel/bit to be passive (resistor) pull-up
allowing one to wire-or more than one output together.

· ACTive configures the digital channel/bit to both source and sink current.

· Related Commands: SOURce:PULSe:POLarity, OUTPut:TYPE?

OUTPut

Chapter 6 VT1415A Command Reference 219

· *RST Condition: OUTP:TYPE ACTIVE (for TTL compatibility)

Usage OUTP:TYPE PASS,(@140:143) make channels 40 to 43 passive pull-up

OUTPut:TYPE?

OUTPut:TYPE? <channel> returns the output drive characteristic for a digital
channel.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

channel string 100 - 163 none

Comments · <channel> must specify a single channel.

· If the channel specified is not on a digital SCP, an error will be generated.

· Returned Value: returns PASS or ACT. The type is string.

· *RST Condition: returns ACT

OUTPut:VOLTage:AMPLitude

OUTPut:VOLTage:AMPLitude <amplitude>,(@<ch_list>) sets the excitation
voltage on programmable Strain Bridge Completion SCPs pointed to by <ch_list>
(the VT1511A for example). This command is not used to set output voltage on
SCPs like the VT1531A Voltage Output SCP.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

amplitude numeric (float32) MIN | 0 |1 | 2 | 5 | 10 | MAX none

ch_list channel list (string) 100 - 163 none

Comments · To turn off excitation voltage (when using external voltage source) program
<amplitude> to 0.

· Related Commands: OUTP:VOLT:AMPL?

· *RST Condition: MIN (0)

Usage OUTP:VOLT:AMPL 5,(@116:119) set excitation voltage for channels 16
through 19

220 VT1415A Command Reference Chapter 6

OUTPut:VOLTage:AMPLitude?

OUTPut:VOLTage:AMPLitude? (@<channel>) returns the current setting of
excitation voltage for the channel specified by <channel>. If the channel is not on a
VT1511A SCP, the query will return zero.

Comments · channel must specify a single channel only.

· Returned Value: Numeric, one of 0, 1, 2 , 5, or 10. C-SCPI type is float32.

· Related Commands: OUTP:VOLT:AMPL

Usage OUTP:VOLT:AMPL? (@103) returns current setting of excitation voltage
for channel 3

OUTPut

Chapter 6 VT1415A Command Reference 221

ROUTe

The ROUTe subsystem provides a method to query the overall channel list
definition for its sequence of channels.

Subsystem Syntax ROUTe
:SEQuence

:DEFine?
:POINts?

ROUTe:SEQuence:DEFine?

ROUTe:SEQuence:DEFine? <type> returns the sequence of channels defined in
the scan list.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

type (string) AIN | AOUT | DIN | DOUT none

Comments · The channel list contents and sequence are determined primarily by channel
references in the algorithms currently defined. The SENS:REF:CHANNELS
and SENS:CHAN:SETTLING commands also effect the scan list contents.

· The <type> parameter selects which channel list will be queried:

“AIN” selects the Analog Input channel list (this is the Scan List).
“AOUT” selects the Analog Output channel list.
“DIN” selects the Digital Input channel list.
“DOUT” selects the Digital Output channel list.

· Returned Value: Definite Length Arbitrary Block Data format. This data return
format is explained in “Arbitrary Block Program Data” on page 156 of this
chapter. Each value is 2 bytes in length (the C-SCPI data type is an int16
array).

· *RST Condition: To supply the necessary time delay before Digital inputs are
read, the analog input (AIN) scan list contains eight entries for channel 0
(100).This minimum delay is maintained by replacing these default channels as
others are defined in algorithms. After algorithm definition, if some delay is still
required, there will be repeat entries of the last channel referenced by an
algorithm. The three other lists contain no channels.

Usage ROUT:SEQ:DEF? AIN query for analog input (Scan List) sequence

ROUTe

222 VT1415A Command Reference Chapter 6

ROUTe:SEQuence:POINts?

ROUTe:SEQuence:POINts? <type> returns the number of channels defined in
each of the four channel list types.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

type (string) AIN | AOUT | DIN | DOUT none

Comments · The channel list contents and sequence are determined by channel references in
the algorithms currently defined.

· The <type> parameter selects which channel list will be queried:

“AIN” selects the Analog Input list.
“AOUT” selects the Analog Output list.
“DIN” selects the Digital Input list.
“DOUT” selects the Digital Output list.

· Returned Value: Numeric. The C_SCPI type is int16.

· *RST Condition: The Analog Input list returns +8, the others return +0.

Usage ROUT:SEQ:POINTS? AIN query for analog input channel count

ROUTe

Chapter 6 VT1415A Command Reference 223

SAMPle

The SAMPle subsystem provides commands to set and query the interval between
channel measurements (pacing).

Subsystem Syntax SAMPle
:TIMer <interval>
:TIMer?

SAMPle:TIMer

SAMPle:TIMer <interval> sets the time interval between channel measurements.
It is used to provide additional channel settling time. See “Settling Characteristics”
discussion on page 106.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

interval numeric (float32)
(string)

1.0E-5 to 16.3825E-3 |
MIN | MAX

seconds

Comments · The minimum <interval> is 10 µs. The resolution for <interval> is 2.5 µs.

· If the Sample Timer interval multiplied by the number of channels in the
specified Scan List is longer than the Trigger Timer interval, at run time a
“Trigger too fast” error will be generated.

· the SAMP:TIMER interval can change the effect of the
SENS:CHAN:SETTLING command. ALG:CHAN:SETT specifies the number
of times a channel measurement should be repeated. The total settling time per
channel then is (SAMP:TIMER <interval>) X (<chan_repeats> from
SENS:CHAN:SETT)

· When Accepted: Not while INITiated

· Related Commands: SENSE:CHAN:SETTLING, SAMP:TIMER?

· *RST Condition: Sample Timer for all Channel Lists set to 1.0E-5 seconds.

Usage SAMPLE:TIMER 50E-6 Pace measurements at 50 µs intervals

SAMPle

224 VT1415A Command Reference Chapter 6

SAMPle:TIMer?

SAMPle:TIMer? returns the sample timer interval.

Comments · Returned Value: Numeric. The C-SCPI type is float32.

· Related Commands: SAMP:TIMER

· *RST Condition: Sample Timer set to 1.0E-5 seconds.

Usage SAMPLE:TIMER? Check the interval between channel
measurements

SAMPle

Chapter 6 VT1415A Command Reference 225

[SENSe]

Subsystem Syntax [SENSe:]
:CHAN nel

:SET Tling <set tle_time>,(@<ch_list>)
:SET Tling? (@<chan nel>)

DATA
:CVTable? (@<el e ment_list>)

:RE Set
:FIFO

[:ALL]?
:COUNt?

:HALF?
:HALF?
:MODE BLOCk | OVER write
:MODE?
:PART? <n_val ues>
:RE Set

FRE Quency:AP ER ture <gate time>,<ch_list>
FRE Quency:AP ER ture? <chan nel>
FUNC tion

:CON Di tion (@<ch_list>)
:CUS Tom [<range>,](@<ch_list>)

:REF er ence [<range>,](@<ch_list>)
:TC <type>,[<range>,](@<ch_list>)

:FRE Quency (@<ch_list>)
:RE Sis tance <ex cite_cur rent>,[<range>,](@<ch_list>)
:STRain

:FBENding [<range>,](@<ch_list>)
:FBPoisson [<range>,](@<ch_list>)
:FPOisson [<range>,](@<ch_list>)
:HBENding [<range>,](@<ch_list>)
:HPOisson [<range>,](@<ch_list>)
[:QUAR ter] [<range>,](@<ch_list>)

:TEM Per a ture <sen sor_type>,<sub_type>,[<range>,](@<ch_list>)
:TOTalize (@<ch_list>)
:VOLT age[:DC] [<range>,](@<ch_list>)

REF er ence <sen sor_type>, [<sub_type>,](@<ch_list>)
:CHAN nels (@<ref_chan nel>),(@<ch_list>)
:TEM Per a ture <de grees_cel sius>

STRain
:EX Ci ta tion <ex cite_v>,(@<ch_list>)
:EX Ci ta tion? (@<chan nel>)
:GFACtor <gage_fac tor>,(@<ch_list>)
:GFACtor? (@<chan nel>)
:POIS son <pois son_ra tio>,(@<ch_list>)
:POIS son? (@<chan nel>)
:UN STrained <un strained_v>,(@<ch_list>)
:UN STrained? (@<chan nel>)

TOTalize:RE Set:MODE INIT | TRIG ger,(@<ch_list>)
TOTalize:RESet:MODE? (@<channel>)

[SENSe]

226 VT1415A Command Reference Chapter 6

[SENSe:]CHANnel:SETTling

[SENSe:]CHANnel:SETTling <num_samples>,<ch_list> specifies the number of
measurement samples to make on channels in <ch_list>. SENS:CHAN:SETTLING
is used to provide additional settling time only to selected channels that might need
it. See the “Settling Characteristics” discussion on page 106.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

settle_time numeric (int16) 1 to 64 none

ch_list string 100 - 163 none

Comments · SENS:CHAN:SETTLING causes each channel specified in <ch_list> that is
also referenced in an algorithm to appear <num_samples> times in the analog
input Scan List. Channels that do not appear in any SENS:CHAN:SETT
command will be entered into the scan list only once when referenced in an
algorithm.

· Since the scan list is limited to 64 entries, an error will be generated if the
number of channels referenced in algorithms plus the additional entries from
any SENS:CHAN:SETTLING commands that coincide with algorithm
referenced channels exceeds 64.

· The SAMPLE:TIMER command can change the effect of the
SENS:CHAN:SETTLING command since SAMPLE:TIMER changes the
amount of time for each measurement sample.

· When Accepted: Not while INITiated

· Related Commands: [SENSe:]CHANnel:SETTling?, SAMPLE:TIMER

· *RST Condition: SENS:CHAN:SETTLING 1,(@100:163)

Usage SENS:CHAN:SETT 4,(@144,156) settle channels 44 and 56 for 4
measurement periods

[SENSe:]CHANnel:SETTling?

[SENSe:]CHANnel:SETTling? <channel> returns the current number of samples
to make on <channel>.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

channel string 100 - 163 none

Comments · <channel> must specify a single channel.

· Related Commands: SENS:CHAN:SETT, SAMP:TIMER?

[SENSe]

Chapter 6 VT1415A Command Reference 227

· *RST Condition: will return 1 for all channels.

· Returned Value: returns numeric number of samples, The type is int16.

[SENSe:]DATA:CVTable?

[SENSe:]DATA:CVTable? (@<element_list>) returns from the Current Value
Table the most recent values stored by algorithms.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

element_list channel list 10 - 511 none

Comments · [SENSe:]DATA:CVTable? (@<element_list>) allows the latest values of
internal algorithm variables to be "viewed" while algorithms are executing.

· The Current Value Table is an area in memory that can contain as many as 502
32-bit floating point values. Algorithms can copy any of their variable values
into these CVT elements while they execute.

· There is a pre-defined organization for the first part of the CVT. It is divided
into 32, 10 element segments. This allows up to 32 PID algorithms to place up
to 10 variable values each into the CVT. The pre-defined PIDB algorithm can
return 4 variable values. The PIDC algorithm (defined as a custom algorithm)
can return up to 9. With up to 32 PIDs possible, 320 elements are allocated for
“standard” PIDs. ALG1 can use elements 10-19, ALG2 can use elements 20-29,
ALG3 can use elements 30-39, etc. through ALG32 which can use elements
320-329. The values stored in each segment are:

Element Variable Description
xx0 Sense Process value monitored (PIDB & C)
xx1 Error Setpoint value minus Sense value (PIDB & C)
xx2 Output Process control drive value (PIDB & C)
xx3 Status Bit values indicate Clips/Alarms limited (PIDB & C)
xx4 Setpoint Setpoint value (PIDC only)
xx5 Setpoint_D Value of Differential term from setpoint (PIDC only)
xx6 P Value of Proportional term (PIDC only)
xx7 I Value of Integral term (PIDC only)
xx8 D Value of Differential term (PIDC only)
xx9 reserved for future use

· Elements 0 through 9 are not accessible.

· Custom written algorithms can use CVT elements 330-511. The user defines
how a custom algorithm will use this area.

· The format of values returned is set using the FORMat[:DATA] command

· Returned Value: ASCII values are returned in the form ±1.234567E ±123. For
example 13.325 volts would be +1.3325000E+001. Each value is followed by a
comma (,). A line feed (LF) and End-Or-Identify (EOI) follow the last value.
The C-SCPI data type is a string array.

[SENSe]

228 VT1415A Command Reference Chapter 6

REAL 32, REAL 64, and PACK 64, values are returned in the IEEE-488.2-1987
Definite Length Arbitrary Block Data format. This data return format is
explained in “Arbitrary Block Program Data” on page 156 of this chapter. For
REAL 32, each value is 4 bytes in length (the C-SCPI data type is a float32
array). For REAL 64 and PACK 64, each value is 8 bytes in length (the C-SCPI
data type is a float64 array).

NOTE After *RST/Power-on, each element in the CVT contains the IEEE-754 value
“Not-a-number” (NaN). Elements specified in the DATA:CVT? command that have
not been written to be an algorithm will return the value 9.91E37.

· *RST Condition: All elements of CVT contains IEEE-754 “Not a Number.”

Usage SENS:DATA:CVT? (@10:13) Return all variables from Std PIDB ALG1

DATA:CVT? (@30:38) Return all nine variables from PIDC ALG3

DATA:CVT? (@10,13) Return only element 0 (Sense) and element 3
(Status) from PID ALG1

DATA:CVT? (@330:337,350,360) Return custom algorithm values from
elements 330-337, 350, and 360

[SENSe:]DATA:CVTable:RESet

[SENSe:]DATA:CVTable:RESet sets all 64 Current Value Table entries to the
IEEE-754 “Not-a-number.”

Comments · The value of NaN is +9.910000E+037 (ASCII).

· Executing DATA:CVT:RES while the module is INITiated will generate an
error 3000, “Illegal while initiated.”

· When Accepted: Not while INITiated

· Related Commands: SENSE:DATA:CVT?

· *RST Condition: SENSE:DATA:CVT:RESET

Usage SENSE:DATA:CVT:RESET Clear the Current Value Table

[SENSe:]DATA:FIFO[:ALL]?

[SENSe:]DATA:FIFO[:ALL]? returns all values remaining in the FIFO buffer
until all measurements are complete or until the number of values returned exceeds
FIFO buffer size (65,024).

Comments · DATA:FIFO? may be used to acquire all values (even while they are being
made) into a single large buffer or can be used after one or more
DATA:FIFO:HALF? commands to return the remaining values from the FIFO.

Chapter 6 VT1415A Command Reference 229

· The format of values returned is set using the FORMat[:DATA] command.

· Returned Value: ASCII values are returned in the form ±1.234567E±123. For
example 13.325 volts would be +1.3325000E+001. Each value is followed by a
comma (,). A line feed (LF) and End-Or-Identify (EOI) follow the last value.
The C-SCPI data type is a string array.

REAL 32, REAL 64, and PACK 64, values are returned in the IEEE-488.2-1987
Indefinite Length Arbitrary Block Data format. This data return format is explained
in “Arbitrary Block Program Data” on page 156 of this chapter. For REAL 32, each
value is 4 bytes in length (the C-SCPI data type is a float32 array). For REAL 64
and PACK 64, each value is 8 bytes in length (the C-SCPI data type is a float64
array).

NOTE Algorithm values which are a positive over-voltage return IEEE +INF and a
negative over-voltage return IEEE -INF (see table on page 200 for actual values for
each data format).

· Related Commands: SENSE:DATA:FIFO:HALF?

· *RST Condition: FIFO is empty

Usage DATA:FIFO? return all FIFO values until measurements
complete and FIFO empty

Command Sequence set up scan lists and trigger

SENSE:DATA:FIFO:ALL?

now execute read statement read statement does not complete until
triggered measurements are complete and
FIFO is empty

[SENSe:]DATA:FIFO:COUNt?

[SENSe:]DATA:FIFO:COUNt? returns the number of values currently in the
FIFO buffer.

Comments · DATA:FIFO:COUNT? is used to determine the number of values to acquire
with the DATA:FIFO:PART? command.

· Returned Value: Numeric 0 through 65,024. The C-SCPI type is int32.

· Related Commands: DATA:FIFO:PART?

· *RST Condition: FIFO empty

Usage DATA:FIFO:COUNT? Check the number of values in the FIFO
buffer

[SENSe]

230 VT1415A Command Reference Chapter 6

[SENSe:]DATA:FIFO:COUNt:HALF?

[SENSe:]DATA:FIFO:COUNt:HALF? returns a 1 if the FIFO is at least half full
(contains at least 32,768 values) or 0 if FIFO is less than half-full.

Comments · DATA:FIFO:COUNT:HALF? is used as a fast method to poll the FIFO for the
half-full condition.

· Returned Value: Numeric 1 or 0. The C-SCPI type is int16.

· Related Commands: DATA:FIFO:HALF?

· *RST Condition: FIFO empty

Command Sequence DATA:FIFO:COUNT:HALF? poll FIFO for half-full status

DATA:FIFO:HALF? returns 32,768 values

[SENSe:]DATA:FIFO:HALF?

[SENSe:]DATA:FIFO:HALF? returns 32,768 values if the FIFO buffer is at least
half-full. This command provides a fast means of acquiring blocks of values from
the buffer.

Comments · For acquiring data from continuous algorithm executions, an application needs
to execute a DATA:FIFO:HALF? command and a read statement often enough
to keep up with the rate that values are being sent to the FIFO.

· Use the DATA:FIFO:ALL? command to acquire the values remaining in the
FIFO buffer after the ABORT command has stopped execution.

· The format of values returned is set using the FORMat[:DATA] command.

· Returned Value: ASCII values are returned in the form ±1.234567E±123. For
example 13.325 volts would be +1.3325000E+001. Each value is followed by a
comma (,). A line feed (LF) and End-Or-Identify (EOI) follow the last value.
The C-SCPI data type is a string array.

REAL 32, REAL 64, and PACK 64, values are returned in the IEEE-488.2-1987
Definite Length Arbitrary Block Data format. This data return format is
explained in “Arbitrary Block Program Data” on page 156 of this chapter. For
REAL 32, each value is 4 bytes in length (the C-SCPI data type is a float32
array). For REAL 64 and PACK 64, each value is 8 bytes in length (the C-SCPI
data type is a float64 array).

NOTE Algorithm values which are a positive over-voltage return IEEE +INF and a
negative over-voltage return IEEE -INF (see table on page 200 for actual values for
each data format).

Chapter 6 VT1415A Command Reference 231

· Related Commands: DATA:FIFO:COUNT:HALF?

· *RST Condition: FIFO buffer is empty

Command Sequence DATA:FIFO:COUNT:HALF? poll FIFO for half-full status

DATA:FIFO:HALF? returns 32768 values

[SENSe:]DATA:FIFO:MODE

[SENSe:]DATA:FIFO:MODE <mode> sets the mode of operation for the FIFO
buffer.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

mode discrete (string) BLOCk | OVERwrite none

Comments · In BLOCk(ing) mode, if the FIFO becomes full and measurements are still
being made, the new values are discarded.

· OVERwrite mode is used record the latest 65,024 values. The module must be
halted (ABORT sent) before attempting to read the FIFO. In OVERwrite Mode,
if the FIFO becomes full and measurements are still being made, new values
overwrite the oldest values.

· In both modes, Error 3021, “FIFO Overflow,” is generated to indicate that
measurements have been lost.

· When Accepted: Not while INITiated

· Related Commands: SENSE:DATA:FIFO:MODE?,
SENSE:DATA:FIFO:ALL?, SENSE:DATA:FIFO:HALF?,
SENSE:DATA:FIFO:PART?, SENSE:DATA:FIFO:COUNT?

· *RST Condition: SENSE:DATA:FIFO:MODE BLOCk

Usage SENSE:DATA:FIFO:MODE OVERWRITE Set FIFO to overwrite mode

DATA:FIFO:MODE BLOCK Set FIFO to block mode

[SENSe]

232 VT1415A Command Reference Chapter 6

[SENSe:]DATA:FIFO:MODE?

[SENSe:]DATA:FIFO:MODE? returns the currently set FIFO mode.

Comments · Returned Value: String value either BLOCK or OVERWRITE. The C-SCPI
type is string.

· Related Commands: SENSE:DATA:FIFO:MODE

Usage DATA:FIFO:MODE? Enter statement returns either BLOCK or
OVERWRITE

[SENSe:]DATA:FIFO:PART?

[SENSe:]DATA:FIFO:PART? <n_values> returns n_values from the FIFO
buffer.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

n_values numeric (int32) 1 - 2,147,483,647 none

Comments · Use the DATA:FIFO:COUNT? command to determine the number of values in
the FIFO buffer.

· The format of values returned is set using the FORMat[:DATA] command.

· Returned Value: ASCII values are returned in the form ±1.234567E±123. For
example 13.325 volts would be +1.3325000E+001. Each value is followed by a
comma (,). A line feed (LF) and End-Or-Identify (EOI) follow the last value.
The C-SCPI data type is a string array.

REAL 32, REAL 64, and PACK 64, values are returned in the IEEE-488.2-1987
Definite Length Arbitrary Block Data format. This data return format is
explained in “Arbitrary Block Program Data” on page 156 of this chapter. For
REAL 32, each value is 4 bytes in length (the C-SCPI data type is a float32
array). For REAL 64 and PACK 64, each value is 8 bytes in length (the C-SCPI
data type is a float64 array).

NOTE Algorithm values which are a positive over-voltage return IEEE +INF and a
negative over-voltage return IEEE -INF (see table on page 200 for actual values for
each data format).

· Related Commands: DATA:FIFO:COUNT?

· *RST Condition: FIFO buffer empty

Usage DATA:FIFO:PART? 256 return 256 values from FIFO

Chapter 6 VT1415A Command Reference 233

[SENSe:]DATA:FIFO:RESet

[SENSe:]DATA:FIFO:RESet clears the FIFO of values. The FIFO counter is reset
to 0.

Comments · When Accepted: Not while INITiated

· Related Commands: SENSE:DATA:FIFO¼

· *RST Condition: SENSE:DATA:FIFO:RESET

Usage SENSE:DATA:FIFO:RESET Clear the FIFO

[SENSe:]FREQuency:APERture

[SENSe:]FREQuency:APERture <gate_time>,<ch_list> sets the gate time for
frequency measurement. The gate time is the time period that the SCP will allow for
counting signal transitions in order to calculate frequency.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

gate_time numeric (float32) 0.001 to 1 (0.001 resolution) seconds

ch_list string 100 - 163 none

Comments · If the channels specified are on an SCP that doesn’t support this function, an
error will be generated. See the SCP’s User’s Manual for its capabilities.

· Related Commands: SENSe:FUNCtion:FREQuency

· *RST Condition: 0.001 s

Usage SENS:FREQ:APER .01,(@144) set channel 44 aperture to 10 ms

[SENSe:]FREQuency:APERture?

[SENSe:]FREQuency:APERture? <ch_list> returns the frequency counting gate
time.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

channel string 100 - 163 none

[SENSe]

234 VT1415A Command Reference Chapter 6

Comments · If the channels specified are on an SCP that doesn’t support this function, an
error will be generated. See the SCP’s User’s Manual for its capabilities.

· Related Commands: SENSe:FREQuency:APERture

· Returned Value: returns numeric gate time in seconds, The type is float32.

[SENSe:]FUNCtion:CONDition

[SENSe:]FUNCtion:CONDition <ch_list> sets the SENSe function to input the
digital state for channels in <ch_list>. Also configures digital SCP channels as
inputs (this is the *RST condition for all digital I/O channels).

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

ch_list string 100 - 163 none

Comments · The VT1533A SCP senses 8 digital bits on each channel specified by this
command. The VT1534A SCP senses 1 digital bit on each channel specified by
this command.

· If the channels specified are not on a digital SCP, an error will be generated.

· Use the INPut:POLarity command to set input logical sense.

· Related Commands: INPut:POLarity

· *RST Condition: SENS:FUNC:COND and INP:POL NORM for all digital
SCP channels.

Usage To set second 8-bits of VT1533A at SCP position 4 and upper 4-bits of VT1534A at
SCP position 5 to digital inputs send:

SENS:FUNC:COND (@133,144:147)

[SENSe:]FUNCtion:CUSTom

[SENSe:]FUNCtion:CUSTom [<range>,](@<ch_list>) links channels with the
custom Engineering Unit Conversion table loaded with the DIAG:CUST:LINEAR
or DIAG:CUST:PIECE commands. Contact a VXI Technology System Engineer for
more information on Custom Engineering Unit Conversion for specific applications.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

range numeric (float32) see first comment V dc

ch_list channel list (string) 100 - 163 none

[SENSe]

Chapter 6 VT1415A Command Reference 235

Comments · <range> parameter: The VT1415A has five ranges: 0.0625 V dc, 0.25 V dc, 1 V dc,
4 V dc, and 16 V dc. To select a range, simply specify the range value (for example, 4
selects the 4 V dc range). If a value larger than one of the first four ranges is specified,
the VT1415A selects the next higher range (for example, 4.1 selects the 16 V dc
range). Specifying a value larger than 16 causes an error -222 “Data out of range.”
Specifying 0 selects the lowest range (0.0625 V dc). Specifying AUTO selects auto
range. The default range (no range parameter specified) is auto range.

· If using amplifier SCPs, set them first and keep their settings in mind when specifying
a range setting. For instance, if the expected signal voltage is to be approximately
0.1 V dc and the amplifier SCP for that channel has a gain of 8, <range> must be set
no lower than 1 V dc or an input out-of-range condition will exist.

· If an A/D reading is greater than the <table_range> specified with
DIAG:CUSTOM:PIEC, an overrange condition will occur.

· If no custom table has been loaded for the channels specified with
SENS:FUNC:CUST, an error will be generated when an INIT command is given.

· When Accepted: Not while INITiated

· Related Commands: DIAG:CUST:¼

· *RST Condition: all custom EU tables erased

Usage program must put table constants into array table_block

DIAG:CUST:LIN 1,table_block,(@116:123) send table to VT1415A for chs 16-23

SENS:FUNC:CUST 1,(@116:123) link custom EU with chs 16-23

INITiate then TRIGger module

[SENSe:]FUNCtion:CUSTom:REFerence

[SENSe:]FUNCtion:CUSTom:REFerence [<range>,](@<ch_list>) links
channels with the custom Engineering Unit Conversion table loaded with the
DIAG:CUST:PIECE command. Measurements from a channel linked with
SENS:FUNC:CUST:REF will result in a temperature that is sent to the Reference
Temperature Register. This command is used to measure the temperature of an
isothermal reference panel using custom characterized RTDs or thermistors. Contact
a VXI Technology System Engineer for more information on Custom Engineering
Unit Conversion for specific applications.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

range numeric (float32) see comments V dc

ch_list channel list (string) 100 - 163 none

Comments · See “Linking Input Channels to EU Conversion” on page 60 for more
information.

[SENSe]

236 VT1415A Command Reference Chapter 6

· The <range> parameter: The VT1415A has five ranges: 0.0625 V dc, 0.25 V dc,
1 V dc, 4 V dc, and 16 V dc. To select a range, simply specify the range value
(for example, 4 selects the 4 V dc range). If a value larger than one of the first
four ranges is specified, the VT1415A selects the next higher range (for
example, 4.1 selects the 16 V dc range). Specifying a value larger than 16
generates an error. Specifying 0 selects the lowest range (0.0625 V dc).
Specifying AUTO selects auto range. The default range (no range parameter
specified) is auto range.

· If using amplifier SCPs, set them first and keep their settings in mind when
specifying a range setting. For instance, if the expected signal voltage is to be
approximately 0.1 V dc and the amplifier SCP for that channel has a gain of 8,
<range> must be set no lower than 1 V dc or an input out-of-range condition
will exist.

· The *CAL? command calibrates temperature channels based on Sense Amplifier
SCP setup at the time of execution. If SCP settings are changed, those channels
are no longer calibrated. *CAL? must be executed again.

· Related Commands: DIAG:CUST:PIEC, SENS:FUNC:TEMP,
SENS:FUNC:CUST:TC, *CAL?

· *RST Condition: all custom EU tables erased

Usage program must put table constants into array table_block

DIAG:CUST:PIEC 1,table_block,(@108) send characterized reference transducer
table for use by channel 8

SENS:FUNC:CUST:REF .25,(@108) link custom ref temp EU with ch 8

include this channel in a scan list with thermocouple channels (REF channel first)

INITiate then TRIGger module

[SENSe:]FUNCtion:CUSTom:TCouple

[SENSe:]FUNCtion:CUSTom:TCouple <type>,[<range>,](@<ch_list>) links
channels with the custom Engineering Unit Conversion table loaded with the
DIAG:CUST:PIECE command. The table is assumed to be for a thermocouple and
the <type> parameter will specify the built-in compensation voltage table to be used
for reference junction temperature compensation. SENS:FUNC:CUST:TC allows an
EU table to be used that is custom matched to thermocouple wire characterized.
Contact a VXI Technology System Engineer for more information on Custom
Engineering Unit Conversion for specific applications.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

type discrete (string) E | EEXT | J | K | N | R | S | T none

range numeric (float32) see comments V dc

ch_list channel list (string) 100 - 163 none

Comments · See “Linking Input Channels to EU Conversion” on page 60 for more
information.

[SENSe]

Chapter 6 VT1415A Command Reference 237

· The <range> parameter: The VT1415A has five ranges: 0.0625 V dc, 0.25 V dc,
1 V dc, 4 V dc, and 16 V dc. To select a range, simply specify the range value
(for example, 4 selects the 4 V dc range). If a value larger than one of the first
four ranges is specified, the VT1415A selects the next higher range (for
example, 4.1 selects the 16 V dc range). Specifying a value larger than 16
generates an error. Specifying 0 selects the lowest range (0.0625 V dc).
Specifying AUTO selects auto range. The default range (no range parameter
specified) is auto range.

· If using amplifier SCPs, set them first and keep their settings in mind when
specifying a range setting. For instance, if the expected signal voltage is to be
approximately 0.1 V dc and the amplifier SCP for that channel has a gain of 8,
<range> must be set no lower than 1 V dc or an input out-of-range condition
will exist.

· The <sub_type> EEXTended applies to E type thermocouples at 800 °C and
above.

· The *CAL? command calibrates temperature channels based on Sense Amplifier
SCP setup at the time of execution. If SCP settings are changed, those channels
are no longer calibrated. *CAL? must be executed again.

· Related Commands: DIAG:CUST:PIEC, *CAL?,SENS:REF, and
SENS:REF:TEMP

· *RST Condition: all custom EU tables erased

Usage program must put table constants into array table_block

DIAG:CUST:PIEC 1,table_block,(@100:107) send characterized thermocouple table for
use by channels 0-7

SENS:FUNC:CUST:TC N,.25,(@100:107) link custom thermocouple EU with chs 0-7,
use reference temperature compensation for
N type wire.

SENSE:REF RTD,92,(@120) designate a channel to measure the
reference junction temperature

include these channels in a scan list (REF channel first)

INITiate then TRIGger module

[SENSe:]FUNCtion:FREQuency

[SENSe:]FUNCtion:FREQuency <ch_list> sets the SENSe function to frequency
for channels in <ch_list>. Also configures the channels specified as digital inputs.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

ch_list string 100 - 163 none

Comments · If the channels specified are on an SCP that doesn’t support this function, an
error will be generated. See the SCP’s User’s Manual for its capabilities.

[SENSe]

238 VT1415A Command Reference Chapter 6

· Use the SENSe:FREQuency:APERture command to set the gate time for the
frequency measurement.

· Related commands: SENS:FREQ:APER

· *RST Condition: SENS:FUNC:COND and INP:POL NORM for all digital
SCP channels.

Usage SENS:FUNC:FREQ (@144) set channel 44’s sense function to frequency

[SENSe:]FUNCtion:RESistance

[SENSe:]FUNCtion:RESistance <excite_current>,[<range>,](@<ch_list>) links
the EU conversion type for resistance and range with the channels specified by
<ch_list>.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

excite_current discrete(string) 30E-6 | 488E-6 | MIN | MAX amps

range numeric (float32) see first comment V dc

ch_list channel list (string) 100 - 163 none

Comments · The <range> parameter: The VT1415A has five ranges: 0.0625 V dc, 0.25 V dc,
1 V dc, 4 V dc, and 16 V dc. To select a range, simply specify the range value
(for example, 4 selects the 4 V dc range). If a value larger than one of the first
four ranges is specified, the VT1415A selects the next higher range (for
example, 4.1 selects the 16 V dc range). Specifying a value larger than 16
causes an error. Specifying 0 selects the lowest range (0.0625 V dc).
Specifying AUTO selects auto range. The default range (no range parameter
specified) is auto range.

· If amplifier SCPs, set them first and keep their settings in mind when specifying
a range setting. For instance, if the expected signal voltage is to be
approximately 0.1 V dc and the amplifier SCP for that channel has a gain of 8,
<range> must be set no lower than 1 V dc or an input out-of-range condition
will exist.

· Resistance measurements require the use of Current Source Signal Conditioning
Plug-Ons.

· The <excite_current> parameter (excitation current) does not control the
current applied to the channel to be measured. The <excite_current> parameter
only passes the setting of the SCP supplying current to channel to be measured.
The current must have already been set using the OUTPUT:CURRENT:AMPL
command. The choices for <excite_current> are 30E-6 (or MIN) and 488E-6
(or MAX). <excite_current> may be specified in milliamps (ma) and
microamps (ua).

[SENSe]

Chapter 6 VT1415A Command Reference 239

· The *CAL? command calibrates resistance channels based on Current Source
SCP and Sense Amplifier SCP setup at the time of execution. If SCP settings are
changed, those channels are no longer calibrated. *CAL? must be executed
again.

· See “Linking Input Channels to EU Conversion” on page 60 for more
information.

· When Accepted: Not while INITiated

· Related Commands: OUTP:CURR, *CAL?

· *RST Condition: SENSE:FUNC:VOLT (@100:163)

Usage FUNC:RES 30ua,(@100,105,107) Set channels 0, 5, and 7 to convert voltage
to resistance assuming current source set to
30 mA use auto-range (default)

[SENSe:]FUNCtion:STRain:FBENding
:FBPoisson
:FPOisson
:HBENding
:HPOisson
[:QUARter]

Note on Syntax: Although the strain function is comprised of six separate SCPI
commands, the only difference between them is the bridge type they specify to the
strain EU conversion algorithm.

· [SENSe:]FUNCtion:STRain:<bridge_type> [<range>,](@<ch_list>) links the
strain EU conversion with the channels specified by <ch_list> to measure the
bridge voltage. See “Linking Input Channels to EU Conversion” on page 60 for
more information.

<bridge_type> is not a parameter but is part of the command syntax. The following
table relates the command syntax to bridge type. See the user’s manual for the
optional Strain SCP for bridge schematics and field wiring information.

Command Bridge Type

:FBENding Full Bending Bridge

:FBPoisson Full Bending Poisson Bridge

:FPOisson Full Poisson Bridge

:HBENding Half Bending Bridge

:HPOisson Half Poisson Bridge

[:QUARter] Quarter Bridge (default)

[SENSe]

240 VT1415A Command Reference Chapter 6

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

range numeric (flt32) see comments V dc

ch_list channel list (string) 100 - 163 none

Comments · Strain measurements require the use of Bridge Completion Signal Conditioning
Plug-Ons.

· Bridge Completion SCPs provide the strain measurement bridges and their
excitation voltage sources. <ch_list> specifies the voltage sensing channels that
are to measure the bridge outputs. Measuring channels on a Bridge Completion
SCP only returns that SCP’s excitation source voltage.

· The <range> parameter: The VT1415A has five ranges: 0.0625 V dc, 0.25 V dc,
1 V dc, 4 V dc, and 16 V dc. To select a range, simply specify the range value
(for example, 4 selects the 4 V dc range). If a value larger than one of the first
four ranges is specified, the VT1415A selects the next higher range (for
example, 4.1 selects the 16 V dc range). Specifying a value larger than 16
generates an error. Specifying 0 selects the lowest range (0.0625 V dc).
Specifying AUTO selects auto range. The default range (no range parameter
specified) is auto range.

· If using amplifier SCPs, set them first and keep their settings in mind when
specifying a range setting. For instance, if the expected signal voltage is to be
approximately 0.1 V dc and the amplifier SCP for that channel has a gain of 8,
<range> must be set no lower than 1 V dc or an input out-of-range condition
will exist.

· The channel calibration command (*CAL?) calibrates the excitation voltage
source on each Bridge Completion SCP.

· When Accepted: Not while INITiated

· Related Commands: *CAL?, [SENSE:]STRAIN¼

· *RST Condition: SENSE:FUNC:VOLT 0,(@100:163)

Usage FUNC:STRAIN 1,(@100:,105,107) quarter bridge sensed at channels 0, 5, and
7

[SENSe:]FUNCtion:TEMPerature

[SENSe:]FUNCtion:TEMPerature <type>,<sub_type>,[<range>,](@<ch_list>)
links channels to an EU conversion for temperature based on the sensor specified in
<type> and <sub_type>. Not for sensing thermocouple reference temperature
(for that, use the SENS:REF <type>,<sub_type>,(@<channel>) command).

[SENSe]

Chapter 6 VT1415A Command Reference 241

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

type discrete (string) RTD | THERmistor | TCouple none

sub_type numeric (float32)
numeric (float32)
discrete (string)

for RTD use 85 | 92
for THER use 2250 | 5000 | 10000
for TC use CUSTom | E | EEXT |
 J | K | N | R | S | T

none
ohms
none

range numeric (float32) see comments V dc

ch_list channel list (string) 100 - 163 none

Comments · Resistance temperature measurements (RTDs and THERmistors) require the use
of Current Source Signal Conditioning Plug-Ons. The following table shows the
Current Source setting that must be used for the following RTDs and
Thermistors:

Required Current
Amplitude

Temperature Sensor Types and
Subtypes

MAX (488 µA)
MIN (30 µA)

for RTD and THER,2250
for THER,5000 and THER,10000

· The <range> parameter: The VT1415A has five ranges: 0.0625V dc, 0.25V dc,
1 V dc, 4 V dc, and 16 V dc. To select a range, simply specify the range value
(for example, 4 selects the 4 V dc range). If a value larger than one of the first
four ranges is specified, the VT1415A selects the next higher range (for
example, 4.1 selects the 16 V dc range). Specifying a value larger than 16
generates an error. Specifying 0 selects the lowest range (0.0625 V dc).
Specifying AUTO selects auto range. The default range (no range parameter
specified) is auto range.

· If amplifier SCPs, set them first and keep their settings in mind when specifying
a range setting. For instance, if the expected signal voltage is to be
approximately 0.1 V dc and the amplifier SCP for that channel has a gain of 8,
<range> must be set no lower than 1 V dc or an input out-of-range condition
will exist.

· The <sub_type> parameter: values of 85 and 92 differentiate between 100 W
(@ 0 °C) RTDs with temperature coefficients of 0.00385 and and 0.00392
ohm/ohm/°C respectively. The <sub_type> values of 2250, 5000, and 10000
refer to thermistors that match the Omega 44000 series temperature response
curve. These 44000 series thermistors are selected to match the curve within 0.1
or 0.2 °C. For thermistors, <sub_type> may be specified in kW (kohm).

The <sub_type> EEXTended applies to E type thermocouples at 800 °C and
above.

CUSTom is pre-defined as Type K, with no reference junction compensation
(reference junction assumed to be at 0 °C).

· The *CAL? command calibrates temperature channels based on Current Source
SCP and Sense Amplifier SCP setup at the time of execution. If SCP settings are

[SENSe]

242 VT1415A Command Reference Chapter 6

changed, those channels are no longer calibrated. *CAL? must be executed
again.

· See “Linking Input Channels to EU Conversion” on page 60 for more
information.

· When Accepted: Not while INITiated

· Related Commands: *CAL?, OUTP:CURR (for RTDs and Thermistors),
SENS:REF and SENS:REF:TEMP (for Thermocouples)

· *RST Condition: SENSE:FUNC:VOLT AUTO,(@100:163)

Usage

Link two channels to the K type thermocouple temperature conversion

SENS:FUNC:TEMP TCOUPLE,K,(@101,102)

Link channel 0 to measure reference temperature using 5 k thermistor

SENS:REF THER,5000,(@100)

[SENSe:]FUNCtion:TOTalize

[SENSe:]FUNCtion:TOTalize <ch_list> sets the SENSe function to TOTalize for
channels in <ch_list>.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

ch_list string 100 - 163 none

Comments · The totalize function counts rising edges of digital transitions at
Frequency/Totalize SCP channels. The counter is 24 bits wide and can count up
to 16,777,215.

· The SENS:TOT:RESET:MODE command controls which events will reset the
counter.

· If the channels specified are not on a Frequency/Totalize SCP, an error will be
generated.

· Related Commands: SENS:TOT:RESET:MODE, INPUT:POLARITY

· *RST Condition: SENS:FUNC:COND and INP:POL NORM for all digital
SCP channels.

Usage SENS:FUNC:TOT (@134) channel 34 is a totalizer

[SENSe:]FUNCtion:VOLTage[:DC]

[SENSe:]FUNCtion:VOLTage[:DC] [<range>,](@<ch_list>) links the specified
channels to return dc voltage.

[SENSe]

Chapter 6 VT1415A Command Reference 243

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

range numeric (float32) see comments V dc

ch_list channel list (string) 100 - 163 none

Comments · The <range> parameter: The VT1415A has five ranges: 0.0625 V dc,
0.25 V dc, 1 V dc, 4 V dc, and 16 V dc. To select a range, simply specify the
range value (for example, 4 selects the 4 V dc range). If a value larger than one
of the first four ranges is specified, the VT1415A selects the next higher range
(for example, 4.1 selects the 16 V dc range). Specifying a value larger than 16
causes an error. Specifying 0 selects the lowest range (0.0625 V dc).
Specifying AUTO selects auto range. The default range (no range parameter
specified) is auto range.

· If using amplifier SCPs, set them first and keep their settings in mind when
specifying a range setting. For instance, if the expected signal voltage is to be
approximately 0.1 V dc and the amplifier SCP for that channel has a gain of 8,
<range> must be set no lower than 1 V dc or an input out-of-range condition
will exist.

· The *CAL? command calibrates channels based on Sense Amplifier SCP setup
at the time of execution. If SCP settings are changed, those channels are no
longer calibrated. *CAL? must be executed again.

· See “Linking Input Channels to EU Conversion” on page 60 for more
information.

· When Accepted: Not while INITiated

· Related Commands: *CAL?, INPUT:GAIN¼

· *RST Condition: SENSE:FUNC:VOLT AUTO,(@100:163)

Usage FUNC:VOLT (@140:163) Channels 40 - 63 measure voltage in
auto-range (defaulted)

[SENSe:]REFerence

[SENSe:]REFerence <type>,<sub_type>,[<range>,](@<ch_list>) links channel in
<ch_list> to the reference junction temperature EU conversion based on <type> and
<sub_type>. When scanned, the resultant value is stored in the Reference
Temperature Register and by default the FIFO and CVT. This is a resistance
temperature measurement and uses the on-board 122 µA current source.

NOTE The reference junction temperature value generated by scanning the reference
channel is stored in the Reference Temperature Register. This reference temperature
is used to compensate all subsequent thermocouple measurements until the register
is overwritten by another reference measurement or by specifying a constant
reference temperature with the SENSE:REF:TEMP command. If used, the reference

[SENSe]

244 VT1415A Command Reference Chapter 6

junction channel must be scanned before any thermocouple channels. Use the
SENSE:REF:CHANNELS command to place the reference measuring channel into
the scan list ahead of the thermocouple measuring channels.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

type discrete (string) THERmistor | RTD | CUSTom none

sub_type numeric (float32)
numeric (float32)

for THER use 5000
for RTD use 85 | 92
for CUSTom use 1

ohm
none
none

range numeric (float32) see comments V dc

ch_list channel list (string) 100 - 163 none

Comments · See “Linking Input Channels to EU Conversion” on page 60 for more
information.

· The <range> parameter: The VT1415A has five ranges: 0.0625 V dc, 0.25 V dc,
1 V dc, 4 V dc, and 16 V dc. To select a range, simply specify the range value
(for example, 4 selects the 4 V dc range). If a value larger than one of the first
four ranges is specified, the VT1415 selects the next higher range (for example,
4.1 selects the 16 V dc range). Specifying a value larger than 16 causes an
error. Specifying 0 selects the lowest range (0.0625 V dc). Specifying AUTO
selects auto range. The default range (no range parameter specified) is auto
range.

· If using amplifier SCPs, set them first and keep their settings in mind when
specifying a range setting. For instance, if the expected signal voltage is to be
approximately 0.1 V dc and the amplifier SCP for that channel has a gain of 8,
<range> must be set no lower than 1 V dc or an input out-of-range condition
will exist.

· The <type> parameter specifies the sensor type that will be used to determine
the temperature of the isothermal reference panel. <type> CUSTom is
pre-defined as Type E with 0 °C reference junction temp and is not
re-defineable.

· For <type> THERmistor, the <sub_type> parameter may be specified in ohms
or kohm.

· The *CAL? command calibrates resistance channels based on Current Source
SCP and Sense Amplifier SCP setup at the time of execution. If SCP settings are
changed, those channels are no longer calibrated. *CAL? must be executed
again.

· Related Commands: SENSE:FUNC:TEMP

· *RST Condition: Reference temperature is 0 °C

[SENSe]

Chapter 6 VT1415A Command Reference 245

Usage sense the reference temperature on channel 20 using an RTD

SENSE:REF RTD,92,(@120)

[SENSe:]REFerence:CHANnels

[SENSe:]REFerence:CHANnels (@<ref_channel>),(@<ch_list>) causes channel
specified by <ref_channel> to appear in the scan list just before the channel(s)
specified by <ch_list>. This command is used to include the thermocouple reference
temperature channel in the scan list before other thermocouple channels are
measured.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

ref_channel channel list (string) 100 - 163 none

ch_list channel list (string) 100 - 163 none

Comments · Use SENS:FUNC:TEMP to configure channels to measure thermocouples. Then
use SENS:REF to configure one or more channels to measure an isothermal
reference temperature. Now use SENS:REF:CHAN to group the reference
channel with its thermocouple measurement channels in the scan list.

· If thermocouple measurements are made through more than one isothermal
reference panel, set up a reference channel for each. Execute the
SENS:REF:CHAN command for each reference/measurement channel group.

· Related commands: SENS:FUNC:TEMP, SENS:REF

· *RST Condition: Scan List contains no channel references.

Usage SENS:FUNC:TEMP TC,E,.0625,(@108:115) E type TCs on channels 8 through 15

SENS:REF THER,5000,1,(@106) Reference ch is thermistor at channel 6

SENS:REF RTD,85,.25,(@107) Reference ch is RTD at channel 7

SENS:REF:CHAN (@106),(@108:111) Thermistor measured before chs 8 - 11

SENS:REF:CHAN (@107),(@112:115) RTD measured before chs 12 - 15

[SENSe:]REFerence:TEMPerature

[SENSe:]REFerence:TEMPerature <degrees_c> stores a fixed reference junction
temperature in the Reference Temperature Register. Use when the thermocouple
reference junction is kept at a controlled temperature.

NOTE This reference temperature is used to compensate all subsequent thermocouple
measurements until the register is overwritten by another SENSE:REF:TEMP value
or by scanning a channel linked with the SENSE:REFERENCE command. If used,
SENS:REF:TEMP must be executed before scanning any thermocouple channels.

[SENSe]

246 VT1415A Command Reference Chapter 6

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

degrees_c numeric (float32) -126 to +126 none

Comments · This command is used to specify to the VT1415A the temperature of a
controlled temperature thermocouple reference junction.

· When Accepted: Not while INITiated

· Related Commands: FUNC:TEMP TC…

· *RST Condition: Reference temperature is 0 °C

Usage SENSE:REF:TEMP 40 subsequent thermocouple conversion will
assume compensation junction at 40 °C

[SENSe:]STRain:EXCitation

[SENSe:]STRain:EXCitation <excite_v>,(@<ch_list>) specifies the excitation
voltage value to be used to convert strain bridge readings for the channels specified
by <ch_list>. This command does not control the output voltage of any source.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

excite_v numeric (flt32) 0.01 - 99 volts

ch_list channel list (string) 100 - 163 none

Comments · <ch_list> must specify the channel used to sense the bridge voltage, not the
channel position on a Bridge Completion SCP.

· Related Commands: SENSE:STRAIN:¼, SENSE:FUNC:STRAIN¼

· *RST Condition: 3.9V

Usage STRAIN:EXC 4,(@100:107) set excitation voltage for channels 0 through
7

[SENSe:]STRain:EXCitation?

[SENSe:]STRain:EXCitation? (@<channel>) returns the excitation voltage value
currently set for the sense channel specified by <channel>.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

channel channel list (string) 100 - 163 none

[SENSe]

Chapter 6 VT1415A Command Reference 247

Comments · Returned Value: Numeric value of excitation voltage. The C-SCPI type is
flt32.

· <channel> must specify a single channel only.

· Related Commands: STRAIN:EXCitation

Usage STRAIN:EXC? (@107) query excitation voltage for channel 7

enter statement here returns the excitation voltage set by
STR:EXC

[SENSe:]STRain:GFACtor

[SENSe:]STRain:GFACtor <gage_factor>,(@<ch_list>) specifies the gage factor
to be used to convert strain bridge readings for the channels specified by <ch_list>.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

gage_factor numeric (flt32) 1 - 5 none

ch_list channel list (string) 100 - 163 none

Comments · <ch_list> must specify the channel used to sense the bridge voltage, not the
channel position on a Bridge Completion SCP.

· Related Commands: SENSE:STRAIN:GFAC?, SENSE:FUNC:STRAIN¼

· *RST Condition: Gage factor is 2

Usage STRAIN:GFAC 3,(@100:107) set gage factor for channels 0 through 7

[SENSe:]STRain:GFACtor?

[SENSe:]STRain:GFACtor? (@<channel>) returns the gage factor currently set
for the sense channel specified by <channel>.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

channel channel list (string) 100 - 163 none

Comments · Returned Value: Numeric value of gage factor. The C-SCPI type is flt32.

· <channel> must specify a single channel only.

· Related Commands: STRAIN:GFACTOR

Usage STRAIN:GFAC? (@107) query gage factor for channel 7

enter statement here returns the gage factor set by STR:GFAC

[SENSe]

248 VT1415A Command Reference Chapter 6

[SENSe:]STRain:POISson

[SENSe:]STRain:POISson <poisson_ratio>,(@<ch_list>) sets the Poisson ratio to
be used for EU conversion of values measured on sense channels specified by
<ch_list>.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

poisson_ratio numeric (flt32) 0.1 - 0.5 none

ch_list channel list (string) 100 - 163 none

Comments · <ch_list> must specify channels used to sense strain bridge output, not channel
positions on a Bridge Completion SCP.

· Related Commands: FUNC:STRAIN¼, STRAIN:POISson?

· *RST Condition: Poisson ratio is 0.3

Usage STRAIN:POISSON .5,(@124:131) set Poisson ratio for sense channels 24
through 31

[SENSe:]STRain:POISson?

[SENSe:]STRain:POISson? (@<channel>) returns the Poisson ratio currently set
for the sense channel specified by <channel>.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

channel channel list (string) 100 - 163 none

Comments · Returned Value: numeric value of the Poisson ratio. C-SCPI type is flt32.

· <channel> must specify a single channel only.

· Related Commands: FUNC:STRAIN¼, STRAIN:POISSON

Usage STRAIN:POISSON? (@131) query for the Poisson ratio specified for
sense channel 31

enter statement here enter the Poisson ratio value

[SENSe:]STRain:UNSTrained

[SENSe:]STRain:UNSTrained <unstrained_v>,(@<ch_list>) specifies the
unstrained voltage value to be used to convert strain bridge readings for the
channels specified by <ch_list>. This command does not control the output voltage
of any source.

[SENSe]

Chapter 6 VT1415A Command Reference 249

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

unstrained_v numeric (flt32) -16 through +16 volts

ch_list channel list (string) 100 - 163 none

Comments · Use a voltage measurement of the unstrained bridge sense channel to determine
the correct value for <unstrained_v>.

· <ch_list> must specify the channel used to sense the bridge voltage, not the
channel position on a Bridge Completion SCP.

· Related Commands: SENSE:STRAIN:UNST?, SENSE:FUNC:STRAIN¼

· *RST Condition: Unstrained voltage is zero

Usage STRAIN:UNST .024,(@100) set unstrained voltage for channel 0

[SENSe:]STRain:UNSTrained?

[SENSe:]STRain:UNSTrained? (@<channel>) returns the unstrained voltage
value currently set for the sense channel specified by <channel>. This command
does not make a measurement.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

channel channel list (string) 100 - 163 none

Comments · Returned Value: Numeric value of unstrained voltage. The C-SCPI type is
flt32.

· <channel> must specify a single channel only.

· Related Commands: STRAIN:UNST

Usage STRAIN:UNST? (@107) query unstrained voltage for channel 7

enter statement here returns the unstrained voltage set by
STR:UNST

[SENSe:]TOTalize:RESet:MODE

[SENSe:]TOTalize:RESet:MODE <select>,<ch_list> sets the mode for resetting
totalizer channels in <ch_list>.

[SENSe]

250 VT1415A Command Reference Chapter 6

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

select discrete (string) INIT | TRIGger seconds

ch_list string 100 - 163 none

Comments · In the INIT mode the total is reset only when the INITiate command is executed.
In the TRIGger mode the total is reset every time a new scan is triggered.

· If the channels specified are not on a Frequency/Totalize SCP, an error will be
generated.

· Related Commands: SENS:FUNC:TOT, INPUT:POLARITY

· *RST Condition: SENS:TOT:RESET:MODE INIT

Usage SENS:TOT:RESET:MODE TRIG,(@134) totalizer at channel 34 resets at each trigger
event

[SENSe]

Chapter 6 VT1415A Command Reference 251

[SENSe:]TOTalize:RESet:MODE?

[SENSe:]TOTalize:RESet:MODE? <channel> returns the reset mode for the
totalizer channel in <channel>.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

channel string 100 - 163 none

Comments · <channel> must specify a single channel.

· If the channel specified is not on a frequency/totalize SCP, an error will be
generated.

· Returned Value: returns INIT or TRIG. The type is string.

[SENSe]

252 VT1415A Command Reference Chapter 6

SOURce

The SOURce command subsystem allows configuring output SCPs as well as
linking channels to output functions.

Subsystem Syntax SOURce
:FM

:STATe 1 | 0 | ON | OFF,(@<ch_list>)
:STATe? (@<channel>)

:FUNCtion
[:SHAPe]

:CONDition (@<ch_list>)
:PULSe (@<ch_list>)
:SQUare (@<ch_list>)

:PULM
:STATe 1 | 0 | ON | OFF,(@<ch_list>)
:STATe? (@<channel>)

:PULSe
:PERiod <period>,(@<ch_list>)
:PERiod? (@<channel>)
:WIDTh <pulse_width>,(@<ch_list>)
:WIDTh? (@<channel>)

SOURce:FM[:STATe]

SOURce:FM[:STATe] <enable>,(@<ch_list>) enables the Frequency Modulated
mode for a PULSe channel.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

enable boolean (uint16) 1 | 0 | ON | OFF none

ch_list string 100 - 163 none

Comments · This command is coupled with the SOURce:PULM:STATE command. If the
FM state is ON then the PULM state is OFF. If the PULM state is ON then the
FM state is OFF. If both the FM and the PULM states are OFF then the PULSe
channel is in the single pulse mode.

· If the channels specified are not on a Frequency/Totalize SCP, an error will be
generated.

· Use SOURce:FUNCtion[:SHAPe]:SQUare to set FM pulse train to 50% duty
cycle. Use SOURce:PULSe:PERiod to set the period.

· *RST Condition: SOUR:FM:STATE OFF, SOUR:PULM:STATE OFF,
SENS:FUNC:COND, and INP:POL for all digital SCP channels

SOURce

Chapter 6 VT1415A Command Reference 253

· Related Commands: SOUR:PULM[:STATe], SOUR:PULS:POLarity,
SOUR:PULS:PERiod, SOUR:FUNC[:SHAPe]:SQUare

· The variable frequency control for this channel is provided by the algorithm
language. When the algorithm executes an assignment statement to this channel,
the value assigned will be the frequency setting. For example:

O143 = 2000 /* set channel 43 to 2 kHz */

SOURce:FM:STATe?

SOURce:FM:STATe? (@<channel>) returns the frequency modulated mode state
for a PULSe channel.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

channel string 100 - 163 none

Comments · <channel> must specify a single channel.

· If the channel specified is not on a Frequency/Totalize SCP, an error will be
generated.

· Returned Value: returns 1 (ON) or 0 (OFF). The type is uint16.

SOURce:FUNCtion[:SHAPe]:CONDition

SOURce:FUNCtion[:SHAPe]:CONDition (@<ch_list>) sets the SOURce
function to output digital patterns to bits in <ch_list>.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

ch_list string 100 - 163 none

Comments · The VT1533A SCP sources 8 digital bits on the channel specified by this
command. The VT1534A SCP can source 1 digital bit on each of the the
channels specified by this command.

SOURce:FUNCtion[:SHAPe]:PULSe

SOURce:FUNCtion[:SHAPe]:PULSe (@<ch_list>) sets the SOURce function to
PULSe for the channels in <ch_list>.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

ch_list string 100 - 163 none

SOURce

254 VT1415A Command Reference Chapter 6

Comments · This PULSe channel function is further defined by the SOURce:FM:STATe and
SOURce:PULM:STATe commands. If the FM state is enabled then the
frequency modulated mode is active. If the PULM state is enabled then the pulse
width modulated mode is active. If both the FM and the PULM states are
disabled then the PULSe channel is in the single pulse mode.

SOURce:FUNCtion[:SHAPe]:SQUare

SOURce:FUNCtion[:SHAPe]:SQUare (@<ch_list>) sets the SOURce function to
output a square wave (50% duty cycle) on the channels in <ch_list>.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

ch_list string 100 - 163 none

Comments · The frequency control for these channels is provided by the algorithm language
function:

O143 = 2000 /* set channel 43 to 2 kHz */

SOURce:PULM[:STATe]

SOURce:PULM[:STATe] <enable>,(@<ch_list>) enable the pulse width
modulated mode for the PULSe channels in <ch_list>.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

enable boolean (uint16) 1 | 0 | ON | OFF none

ch_list string 100 - 163 none

Comments · This command is coupled with the SOURce:FM command. If the FM state is
enabled then the PULM state is disabled. If the PULM state is enabled then the
FM state is disabled. If both the FM and the PULM states are disabled then the
PULSe channel is in the single pulse mode.

· If the channels specified are not on a Frequency/Totalize SCP, an error will be
generated.

· *RST Condition: SOUR:PULM:STATE OFF

SOURce:PULM:STATe?

SOURce:PULM[:STATe]? (@<channel>) returns the pulse width modulated
mode state for the PULSe channel in <channel>.

SOURce

Chapter 6 VT1415A Command Reference 255

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

channel string 100 - 163 none

Comments <channel> must specify a single channel.

· Returned Value: returns ON or OFF. The type is string.

SOURce:PULSe:PERiod

SOURce:PULSe:PERiod <period>,(@<ch_list>) sets the fixed pulse period value
on a pulse width modulated pulse channel. This sets the frequency (1/period) of the
pulse-width-modulated pulse train.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

period numeric (float32) 25E-6 to 7.8125E-3
(resolution 0.238 µs)

seconds

ch_list string 100 - 163 none

Comments · If the channels specified are not on a Frequency/Totalize SCP, an error will be
generated.

· *RST Condition: SOUR:FM:STATE OFF and SOUR:PULM:STATE OFF

· Related Commands: SOUR:PULM:STATE, SOUR:PULS:POLarity

· The variable pulse-width control for this channel is provided by the algorithm
language. When the algorithm executes an assignment statement to this channel,
the value assigned will be the pulse-width setting. For example:

O140 = .0025 /* set channel 43 pulse-width to 2.5 ms */

Usage SOUR:PULS:PER .005,(@140) set PWM pulse train to 200 Hz on
channel 40

SOURce:PULSe:PERiod?

SOURce:PULSe:PERiod? (@<channel>) returns the fixed pulse period value on
the pulse width modulated pulse channel in <channel>.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

channel string 100 - 163 none

Comments · If the channels specified are not on a Frequency/Totalize SCP, an error will be
generated.

SOURce

256 VT1415A Command Reference Chapter 6

· Returned Value: numeric period. The type is float32.

SOURce:PULSe:WIDTh

SOURce:PULSe:WIDTh <pulse_width>,(@<ch_list>) sets the fixed pulse width
value on the frequency modulated pulse channels in <ch_list>.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

pulse_width numeric (float32) 7.87E-6 to 7.8125E-3
(238.4E-9 resolution)

seconds

ch_list string 100 - 163 none

Comments · If the channels specified are not on a Frequency/Totalize SCP, an error will be
generated.

· *RST Condition: SOUR:FM:STATE OFF and SOUR:PULM:STATE OFF

· Related Commands: SOUR:PULM:STATE, SOUR:PULS:POLarity

· The variable frequency control for this channel is provided by the algorithm
language. When the algorithm executes an assignment statement to this channel,
the value assigned will be the frequency setting. For example:

O143 = 2000 /* set channel 43 to 2 kHz */

Usage SOUR:PULS:WIDTH 2.50E-3,(@143) set fixed pulse width of 2.5 ms on channel 43

SOURce:PULSe:WIDTh?

SOURce:PULSe:WIDTh? (@<ch_list>) returns the fixed pulse width value on a
frequency modulated pulse channel.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

channel string 100 - 163 none

Comments · <channel> must specify a single channel.

· If the channels specified are not on a Frequency/Totalize SCP, an error will be
generated.

· Returned Value: returns the numeric pulse width. The type is float32.

SOURce

Chapter 6 VT1415A Command Reference 257

STATus

The STATus subsystem communicates with the SCPI defined Operation and
Questionable Data status register sets. Each is comprised of a Condition register, a
set of Positive and Negative Transition Filter registers, an Event register, and an
Enable register. Condition registers allow the current real-time states of their status
signal inputs (signal states are not latched) to be viewed. The Positive and Negative
Transition Filter registers allow the polarity of change from the Condition registers
to be controlled that will set Event register bits. Event registers contain latched
representations of signal transition events from their Condition register. Querying an
Event register reads and then clears its contents, making it ready to record further
event transitions from its Condition register. Enable registers are used to select
which signals from an Event register will be logically OR'ed together to form a
summary bit in the Status Byte Summary register. Setting a bit to one in an Enable
register enables the corresponding bit from its Event register.

NOTE For a complete discussion see “Using the Status System” on page 91.

STATus

258 VT1415A Command Reference Chapter 6

Bit 0

Bit 1

Bit 14

Bit 15

Condition P/N Transition Event

latch

latch

latch

latch

Enable

Summary Bit to

Status Byte

=1

=1

=1

=1

=1

=1

=1

=1

Logical
OR

Figure 6-4: General Status Register Organization

Initializing the Status
System

The following table shows the effect of Power-on, *RST, *CLS, and
STATus:PRESet on the status system register settings.

SCPI
Transition

Filters

SCPI
Enable

Registers

SCPI
Event

Registers

IEEE 488.2
Registers ESE

and SRE

IEEE 488.2
Registers

SESR and STB

Power-On preset preset clear clear clear

*RST none none none none none

*CLS none none clear none clear

STAT:PRESET preset preset none none none

Subsystem Syntax STA Tus
:OP ER a tion

:CON Di tion?
:EN ABle <en able_mask>
:EN ABle?

 [:EVENt]?
:NTRansition <tran si tion_mask>
:NTRansition?
:PTRansition <tran si tion_mask>
:PTRansition?

:PRE Set
:QUES tion able

:CON Di tion?
:EN ABle <en able_mask>
:EN ABle?

 [:EVENt]?
:NTRansition <tran si tion_mask>
:NTRansition?
:PTRansition <tran si tion_mask>
:PTRansition?

The Status system contains four status groups

· Operation Status Group
· Questionable Data Group
· Standard Event Group
· Status Byte Group

This SCPI STATus subsystem communicates with the first two groups while
IEEE-488.2 Common Commands (documented later in this chapter) communicate
with Standard Event and Status Byte Groups.

STATus

Chapter 6 VT1415A Command Reference 259

Weighted Bit Values Register queries are returned using decimal weighted bit values. Enable registers
can be set using decimal, hex, octal, or binary. The following table can be used to
help set Enable registers using decimal and decode register queries.

Status System Decimal Weighted Bit Values

bit# 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

value always 0 16,384 8,192 4,096 2,048 1,024 512 256 128 64 32 16 8 4 2 1

The Operation Status Group

The Operation Status Group indicates the current operating state of the VT1415A.
The bit assignments are:

Bit # dec value hex value Bit Name Description

0 1 000116 Calibrating Set by CAL:TARE and CAL:SETup. Cleared by
CAL:TARE? and CAL:SETup?. Set while *CAL?
executes and reset when *CAL? completes. Set by
CAL:CONFIG:VOLT or CAL:CONFIG:RES, cleared
by CAL:VAL:VOLT or CAL:VAL:RES.

1-3 Not used

4 16 001016 Measuring Set when instrument INITiated. Cleared when
instrument returns to Trigger Idle State.

5-7 Not used

8 256 010016 Scan Complete Set when each pass through a Scan List completed
(may not indicate all measurements have been taken
when TRIG:COUNT >1).

9 512 020016 SCP Trigger An SCP has sourced a trigger event (future VT1415A
SCPs)

10 1024 040016 FIFO Half Full The FIFO contains at least 32,768 readings

11 2048 080016 Algorithm Interrupted The interrupt() function was called in an algorithm

12-15 Not used

STATus:OPERation:CONDition?

STATus:OPERation:CONDition? returns the decimal weighted value of the bits
set in the Condition register.

Comments · The Condition register reflects the real-time state of the status signals. The
signals are not latched; therefore past events are not retained in this register (see
STAT:OPER:EVENT?).

STATus

260 VT1415A Command Reference Chapter 6

· Returned Value: Decimal weighted sum of all set bits. The C-SCPI type is
uint16.

· Related Commands: *CAL?, CAL:ZERO, INITiate[:IMMediate],
STAT:OPER:EVENT?, STAT:OPER:ENABLE, STAT:OPER:ENABLE?

· *RST Condition: No Change

Usage STATUS:OPERATION:CONDITION? Enter statement will return value from
condition register

STATus:OPERation:ENABle

STATus:OPERation:ENABle <enable_mask> sets bits in the Enable register that
will enable corresponding bits from the Event register to set the Operation summary
bit.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

enable_mask numeric (uint16) 0-32767 none

Comments · <enable_mask> may be sent as decimal, hex (#H), octal (#Q), or binary (#B).

· VXI Interrupts: When Operation Status Group bits 4, 8, 9, 10, or 11 are
enabled, VXI card interrupts will occur as follows:

When the event corresponding to bit 4 occurs and then is cleared, the card
will generate a VXI interrupt. When the event corresponding to bit 8, 9, 10,
or 11 occurs, the card will generate a VXI interrupt.

NOTE: In C-SCPI, the C-SCPI overlap mode must be on for VXIbus
interrupts to occur.

· Related Commands: *STB?, SPOLL, STAT:OPER:COND?,
STAT:OPER:EVENT?, STAT:OPER:ENABLE?

· Cleared By: STAT:PRESet and power-on.

· *RST Condition: No change

Usage STAT:OPER:ENABLE 1 Set bit 0 in the Operation Enable register

STATus:OPERation:ENABle?

STATus:OPERation:ENABle? returns the value of bits set in the Operation
Enable register.

Comments · Returned Value: Decimal weighted sum of all set bits. The C-SCPI type is
uint16.

Chapter 6 VT1415A Command Reference 261

· Related Commands: *STB?, SPOLL, STAT:OPER:COND?,
STAT:OPER:EVENT?, STAT:OPER:ENABLE

· *RST Condition: No change

Usage STAT:OPER:ENABLE? Enter statement returns current value of bits
set in the Operation Enable register

STATus:OPERation[:EVENt]?

STATus:OPERation[:EVENt]? returns the decimal weighted value of the bits set
in the Event register.

Comments · When using the Operation Event register to cause SRQ interrupts,
STAT:OPER:EVENT? must be executed after an SRQ to re-enable future
interrupts.

· Returned Value: Decimal weighted sum of all set bits. The C-SCPI type is
uint16.

· Related Commands: *STB?, SPOLL, STAT:OPER:COND?,
STAT:OPER:ENABLE, STAT:OPER:ENABLE?

· Cleared By: *CLS, power-on and by reading the register.

· *RST Condition: No change

Usage STAT:OPER:EVENT? Enter statement will return the value of bits
set in the Operation Event register

STAT:OPER? Same as above

STATus:OPERation:NTRansition

STATus:OPERation:NTRansition <transition_mask> sets bits in the Negative
Transition Filter (NTF) register. When a bit in the NTF register is set to one, the
corresponding bit in the Condition register must change from a one to a zero in
order to set the corresponding bit in the Event register. When a bit in the NTF
register is zero, a negative transition of the Condition register bit will not change the
Event register bit.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

transition_mask numeric (uint16) 0-32767 none

Comments · The <transition_mask> parameter may be sent as decimal, hex (#H), octal (#Q),
or binary (#B).

· If both the STAT:OPER:PTR and STAT:OPER:NTR registers have a
corresponding bit set to one, any transition, positive or negative, will set the
corresponding bit in the Event register.

STATus

262 VT1415A Command Reference Chapter 6

· If neither the STAT:OPER:PTR or STAT:OPER:NTR registers have a
corresponding bit set to one, transitions from the Condition register will have no
effect on the Event register.

· Related Commands: STAT:OPER:NTR?, STAT:OPER:PTR

· Cleared By: STAT:PRESet and power-on.

· *RST Condition: No change

Usage STAT:OPER:NTR 16 When “Measuring” bit goes false, set bit 4
in Status Operation Event register.

STATus:OPERation:NTRansition?

STATus:OPERation:NTRansition? returns the value of bits set in the Negative
Transition Filter (NTF) register.

Comments · Returned Value: Decimal weighted sum of all set bits. The C-SCPI type is
uint16.

· Related Commands: STAT:OPER:NTR

· *RST Condition: No change

Usage STAT:OPER:NTR? Enter statement returns current value of bits
set in the NTF register

STATus:OPERation:PTRansition

STATus:OPERation:PTRansition <transition_mask> sets bits in the Positive
Transition Filter (PTF) register. When a bit in the PTF register is set to one, the
corresponding bit in the Condition register must change from a zero to a one in
order to set the corresponding bit in the Event register. When a bit in the PTF
register is zero, a positive transition of the Condition register bit will not change the
Event register bit.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

transition_mask numeric (uint16) 0-32767 none

Comments · <transition_mask> may be sent as decimal, hex (#H), octal (#Q), or binary
(#B).

· If both the STAT:OPER:PTR and STAT:OPER:NTR registers have a
corresponding bit set to one, any transition, positive or negative, will set the
corresponding bit in the Event register.

· If neither the STAT:OPER:PTR or STAT:OPER:NTR registers have a
corresponding bit set to one, transitions from the Condition register will have no
effect on the Event register.

STATus

Chapter 6 VT1415A Command Reference 263

· Related Commands: STAT:OPER:PTR?, STAT:OPER:NTR

· Set to all ones by: STAT:PRESet and power-on.

· *RST Condition: No change

Usage STAT:OPER:PTR 16 When “Measuring” bit goes true, set bit 4 in
Status Operation Event register.

STATus:OPERation:PTRansition?

STATus:OPERation:PTRansition? returns the value of bits set in the Positive
Transition Filter (PTF) register.

Comments · Returned Value: Decimal weighted sum of all set bits. The C-SCPI type is
uint16.

· Related Commands: STAT:OPER:PTR

· *RST Condition: No change

Usage STAT:OPER:PTR? Enter statement returns current value of bits
set in the PTF register

STATus:PRESet

STATus:PRESet sets the Operation Status Enable and Questionable Data Enable
registers to 0. After executing this command, none of the events in the Operation
Event or Questionable Event registers will be reported as a summary bit in either the
Status Byte Group or Standard Event Status Group. STATus:PRESet does not clear
either of the Event registers.

Comments · Related Commands: *STB?, SPOLL, STAT:OPER:ENABLE,
STAT:OPER:ENABLE?, STAT:QUES:ENABLE, STAT:QUES:ENABLE?

· *RST Condition: No change

Usage STAT:PRESET Clear both of the Enable registers

The Questionable Data Group

The Questionable Data Group indicates when errors are causing lost or questionable
data. The bit assignments are:

STATus

264 VT1415A Command Reference Chapter 6

Bit # dec value hex value Bit Name Description

0-7 Not used

8 256 010016 Calibration Lost At *RST or Power-on Control Processor has found a
checksum error in the Calibration Constants. Read
error(s) with SYST:ERR? and re-calibrate area(s) that
lost constants.

9 512 020016 Trigger Too Fast Scan not complete when another trigger event
received.

10 1024 040016 FIFO Overflowed Attempt to store more than 65,024 readings in FIFO.

11 2048 080016 Over voltage
Detected on Input

If the input protection jumper has not been cut, the
input relays have been opened and *RST is required
to reset the module. Over-voltage will also generate
an error.

12 4096 100016 VME Memory
Overflow

The number of readings taken exceeds VME memory
space.

13 8192 200016 Setup Changed Channel Calibration in doubt because SCP setup may
have changed since last *CAL? or CAL:SETup
command. (*RST always sets this bit.)

14-15 Not used

STATus:QUEStionable:CONDition?

STATus:QUEStionable:CONDition? returns the decimal weighted value of the
bits set in the Condition register.

Comments · The Condition register reflects the real-time state of the status signals. The
signals are not latched; therefore past events are not retained in this register (see
STAT:QUES:EVENT?).

· Returned Value: Decimal weighted sum of all set bits. The C-SCPI type is
uint16.

· Related Commands: CAL:VALUE:RESISTANCE,
CAL:VALUE:VOLTAGE, STAT:QUES:EVENT?, STAT:QUES:ENABLE,
STAT:QUES:ENABLE?

· *RST Condition: No change

Usage STATUS:QUESTIONABLE:CONDITION? Enter statement will return value from
condition register

STATus:QUEStionable:ENABle

STATus:QUEStionable:ENABle <enable_mask> sets bits in the Enable register
that will enable corresponding bits from the Event register to set the Questionable
summary bit.

STATus

Chapter 6 VT1415A Command Reference 265

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

enable_mask numeric (uint16) 0-32767 none

Comments · <enable_mask> may be sent as decimal, hex (#H), octal (#Q), or binary (#B).

· VXI Interrupts: When bits 9, 10, or 11 are enabled and C-SCPI overlap mode is
on (or if using non-compiled SCPI), VXI card interrupts will be enabled. When
the event corresponding to bit 9, 10, or 11 occurs, the card will generate a VXI
interrupt.

· Related Commands: *STB?, SPOLL, STAT:QUES:COND?,
STAT:QUES:EVENT?, STAT:QUES:ENABLE?

· Cleared By: STAT:PRESet and power-on.

· *RST Condition: No change

Usage STAT:QUES:ENABLE 128 Set bit 7 in the Questionable Enable register

STATus:QUEStionable:ENABle?

STATus:QUEStionable:ENABle? returns the value of bits set in the Questionable
Enable register.

Comments · Returned Value: Decimal weighted sum of all set bits. The C-SCPI type is
uint16.

· Related Commands: *STB?, SPOLL, STAT:QUES:COND?,
STAT:QUES:EVENT?, STAT:QUES:ENABLE

· *RST Condition: No change

Usage STAT:QUES:ENABLE? Enter statement returns current value of bits
set in the Questionable Enable register

STATus:QUEStionable[:EVENt]?

STATus:QUEStionable[:EVENt]? returns the decimal weighted value of the bits
set in the Event register.

Comments · When using the Questionable Event register to cause SRQ interrupts,
STAT:QUES:EVENT? must be executed after an SRQ to re-enable future
interrupts.

· Returned Value: Decimal weighted sum of all set bits. The C-SCPI type is
uint16.

· Cleared By: *CLS, power-on and by reading the register.

STATus

266 VT1415A Command Reference Chapter 6

· Related Commands: *STB?, SPOLL, STAT:QUES:COND?,
STAT:QUES:ENABLE, STAT:QUES:ENABLE?

Usage STAT:QUES:EVENT? Enter statement will return the value of bits
set in the Questionable Event register

STAT:QUES? Same as above

STATus:QUEStionable:NTRansition

STATus:QUEStionable:NTRansition <transition_mask> sets bits in the
Negative Transition Filter (NTF) register. When a bit in the NTF register is set to
one, the corresponding bit in the Condition register must change from a one to a
zero in order to set the corresponding bit in the Event register. When a bit in the
NTF register is zero, a negative transition of the Condition register bit will not
change the Event register bit.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

transition_mask numeric (uint16) 0-32767 none

Comments · <transition_mask> may be sent as decimal, hex (#H), octal (#Q), or binary
(#B).

· If both the STAT:QUES:PTR and STAT:QUES:NTR registers have a
corresponding bit set to one, any transition, positive or negative, will set the
corresponding bit in the Event register.

· If neither the STAT:QUES:PTR or STAT:QUES:NTR registers have a
corresponding bit set to one, transitions from the Condition register will have no
effect on the Event register.

· Related Commands: STAT:QUES:NTR?, STAT:QUES:PTR

· Cleared By: STAT:PRESet and power-on.

· *RST Condition: No change

Usage STAT:QUES:NTR 1024 When “FIFO Overflowed” bit goes false, set
bit 10 in Status Questionable Event register.

STATus:QUEStionable:NTRansition?

STATus:QUEStionable:NTRansition? returns the value of bits set in the Negative
Transition Filter (NTF) register.

Comments · Returned Value: Decimal weighted sum of all set bits. The C-SCPI type is
uint16.

· Related Commands: STAT:QUES:NTR

· *RST Condition: No change

Chapter 6 VT1415A Command Reference 267

Usage STAT:QUES:NTR? Enter statement returns current value of bits
set in the NTF register

STATus:QUEStionable:PTRansition

STATus:QUEStionable:PTRansition <transition_mask> sets bits in the Positive
Transition Filter (PTF) register. When a bit in the PTF register is set to one, the
corresponding bit in the Condition register must change from a zero to a one in
order to set the corresponding bit in the Event register. When a bit in the PTF
register is zero, a positive transition of the Condition register bit will not change the
Event register bit.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

transition_mask numeric (uint16) 0-32767 none

Comments · <transition_mask> may be sent as decimal, hex (#H), octal (#Q), or binary
(#B).

· If both the STAT:QUES:PTR and STAT:QUES:NTR registers have a
corresponding bit set to one, any transition, positive or negative, will set the
corresponding bit in the Event register.

· If neither the STAT:QUES:PTR or STAT:QUES:NTR registers have a
corresponding bit set to one, transitions from the Condition register will have no
effect on the Event register.

· Related Commands: STAT:QUES:PTR?, STAT:QUES:NTR

· Set to all ones by: STAT:PRESet and power-on.

· *RST Condition: No change

Usage STAT:QUES:PTR 1024 When “FIFO Overflowed” bit goes true, set
bit 10 in Status Operation Event register.

STATus:QUEStionable:PTRansition?

STATus:QUEStionable:PTRansition? returns the value of bits set in the Positive
Transition Filter (PTF) register.

Comments · Returned Value: Decimal weighted sum of all set bits. The C-SCPI type is
uint16.

· Related Commands: STAT:QUES:PTR

· *RST Condition: No change

Usage STAT:OPER:PTR? Enter statement returns current value of bits
set in the PTF register

STATus

268 VT1415A Command Reference Chapter 6

SYSTem

The SYSTem subsystem is used to query for error messages, types of Signal
Conditioning Plug-Ons (SCPs) and the SCPI version currently implemented.

Subsystem Syntax SYSTem
:CTYPe? (@<channel>)
:ERRor?
:VERSion?

SYSTem:CTYPe?

SYSTem:CTYPe? (@<channel>) returns the identification of the Signal
Conditioning Plug-On installed at the specified channel.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

channel channel list (string) 100 - 163 none

Comments · The <channel> parameter must specify a single channel only.

· Returned Value: An example of the response string format is:
Agilent,E1415 Option <option number and description> SCP,0,0

The C-SCPI type is string. For specific response string, refer to the appropriate
SCP manual. If <channel> specifies a position where no SCP is installed, the
module returns the response string:
0,No SCP at this Address,0,0

Usage SYST:CTYPE? (@100) return SCP type install at channel 0

SYSTem:ERRor?

SYSTem:ERRor? returns the latest error entered into the Error Queue.

Comments · SYST:ERR? returns one error message from the Error Queue (returned error is
removed from queue). To return all errors in the queue, repeatedly execute
SYST:ERR? until the error message string = +0, “No error”

· Returned Value: Errors are returned in the form:
±<error number>, “<error message string>”

· RST Condition: Error Queue is empty.

Usage SYST:ERR? returns the next error message from the
Error Queue

SYSTem

Chapter 6 VT1415A Command Reference 269

SYSTem:VERSion?

SYSTem:VERSion? returns the version of SCPI this instrument complies with.

Comments · Returned Value: String “1990." The C-SCPI type is string.

Usage SYST:VER? Returns “1990"

SYSTem

270 VT1415A Command Reference Chapter 6

TRIGger

The TRIGger command subsystem controls the behavior of the trigger system once
it is initiated (see INITiate command subsystem).

Figure 6-5 shows the overall Trigger System model. The shaded area shows the
ARM subsystem portion.

CAUTION! Algorithms execute at most once per trigger event. Should trigger events cease
(external trigger source stops) or are ignored (TRIGger:COUNt reached),
algorithms execution will stop. In this case control outputs are left at the last
value set by the algorithms. Depending on the process, this uncontrolled
situation could even be dangerous. Make certain that the process is in a safe
state before halting (stop triggering) execution of a controlling algorithm.

The Agilent/HP E1535 Watchdog Timer SCP was specifically developed to
automatically signal that an algorithm has stopped controlling a process. Use of
the Watchdog Timer is recommended for critical processes.

TRIGger

Chapter 6 VT1415A Command Reference 271

A
R

M
/T

R
IG

g
e

r S
o

u
rce

s

A
R

M
 S

o
u

rce
 S

e
le

cto
r

T
rig

g
e

r S
o

u
rce

 S
e

le
cto

r

EXTernal

Trigger
Timer

Trigger
Enable

TIMer

TRIGger:TIMer <interval>

TRIGger:SOURce <source>

TRIGger:COUNt <count>

Internal
Trigger Signal

Trigger Counter

ARM:SOURce <source>

HOLD

IMMediate

TTLTrg<n>

SCP Trig

BUS

Figure 6-5: Logical Trigger Model

Event Sequence Figure 6-6 shows how the module responds to various trigger/arm configurations.

Subsystem Syntax
TRIGger

:COUNt <trig_count>
 :COUNt?
 [:IMMediate]

:SOURce BUS | EXTernal | HOLD | SCP | IMMediate | TIMer | TTLTrg<n>
:SOURce?
:TIMer

[:PERiod] <trig_interval>
[:PERiod]?

TRIGger

272 VT1415A Command Reference Chapter 6

Trigger Idle
State

INITiate[:IMMediate]

ARM Event

yes

yes

yes

no

no

no

Trigger Events

TRIG:SOUR
TIMer?

Trig. Counter=
TRIG:COUNT?

ABORt

Execute Control
Loop Algorithm

Execute Control
Loop Algorithm

Execute Control
Loop Algorithm

Waiting For
Trigger

Scan Inputs
and Increment
Trig Counter

Execute Control
Loop Algorithm

Update Control
Outputs

Figure 6-6: Trigger/Scan Sequence Diagram

TRIGger:COUNt

TRIGger:COUNt <trig_count> sets the number of times the module can be
triggered before it returns to the Trigger Idle State. The default count is 0 (same as
INF) so accepts continuous triggers. See Figure 6-6.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

trig_count numeric (uint16)
(string)

0 to 65535 | INF none

Comments · When <trig_count> is set to 0 or INF, the trigger counter is disabled. Once
INITiated the module will return to the Waiting For Trigger State after each
trigger event. The ABORT (preferred) and *RST commands will return the
module to the Trigger Idle State. ABORT is preferred since *RST also returns
other module configurations to their default settings.

· The default count is 0

· Related Commands: TRIG:COUNT?

· *RST Condition: TRIG:COUNT 0

Usage TRIG:COUNT 10 Set the module to make 10 passes all
enabled algorithms.

TRIG:COUNT 0 Set the module to accept unlimited triggers
(the default).

TRIGger:COUNt?

TRIGger:COUNt? returns the currently set trigger count.

Comments · If TRIG:COUNT? returns 0, the trigger counter is disabled and the module will
accept an unlimited number of trigger events.

· Returned Value: Numeric 0 through 65,535. The C-SCPI type is int32.

· Related Commands: TRIG:COUNT

· *RST Condition: TRIG:COUNT? returns 0

Usage TRIG:COUNT? Query for trigger count setting.

enter statement Returns the TRIG:COUNT setting.

TRIGger[:IMMediate]

TRIGger[:IMMediate] causes one trigger when the module is set to the
TRIG:SOUR BUS or TRIG:SOUR HOLD mode.

TRIGger

Chapter 6 VT1415A Command Reference 273

Comments · This command is equivalent to the *TRG common command or the IEEE-488.2
“GET” bus command.

· Related Commands: TRIG:SOURCE

Usage TRIG:IMM Use TRIGGER to start a measurement scan.

TRIGger:SOURce

TRIGger:SOURce <trig_source> configures the trigger system to respond to the
trigger event.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

trig_source discrete (string) BUS | EXT | HOLD | IMM | SCP |
TIM | TTLTrg<n>

none

Comments · The following table explains the possible choices.

Parameter Value Source of Trigger

BUS TRIGger[:IMMediate], *TRG, GET (for GPIB)

EXTernal “TRG” signal on terminal module

HOLD TRIGger[:IMMediate]

IMMediate The trigger event is always satisfied.

SCP SCP Trigger Bus (future SCP Breadboard)

TIMer The internal trigger timer

TTLTrg<n> The VXIbus TTLTRG lines (n=0 through 7)

NOTE The ARM system only exists while TRIG:SOUR is TIMer. When TRIG:SOUR is
not TIMer, SCPI compatibility requires that ARM:SOUR be IMM or an Error
-221,"Settings conflict" will be generated.

· While TRIG:SOUR is IMM, simply INITiate the trigger system to start a
measurement scan.

· When Accepted: Before INIT only.

· Related Commands: ABORt, INITiate, *TRG

· *RST Condition: TRIG:SOUR TIMER

Usage TRIG:SOUR EXT Hardware trigger input at Connector
Module.

TRIGger

274 VT1415A Command Reference Chapter 6

TRIGger:SOURce?

TRIGger:SOURce? returns the current trigger source configuration.

· Returned Value: Discrete; one of BUS, EXT, HOLD, IMM, SCP, TIM, or
TTLT0 through TTLT7. The C-SCPI type is string. See the TRIG:SOUR
command for more response data information.

Usage TRIG:SOUR? ask VT1415A to return trigger source
configuration.

TRIGger:TIMer[:PERiod]

TRIGger:TIMer[:PERiod] <trig_interval> sets the interval between scan triggers.
Used with the TRIG:SOUR TIMER trigger mode.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

trig_interval numeric (float32)
(string)

100E-6 to 6.5536 |
MIN | MAX

seconds

Comments · In order for the TRIG:TIMER to start it must be Armed. For information on
timer arming see the ARM subsystem in this command reference.

· The default interval is 10E-3 seconds. <trig_interval> may be specified in
seconds, milliseconds (ms), or microseconds (us). For example; 0.0016, 1.6 ms
or 1600 us. The resolution for <trig_interval> is 100 µs.

· When Accepted: Before INIT only.

· Related Commands: TRIG:SOUR TIMER, ARM:SOUR, ARM:IMM, INIT,
TRIG:SOUR?, ALG:EXPL:TIMe?

· *RST Condition: TRIG:TIM 1.0E-3

Usage TRIG:TIMER 1.0E-1 Set the module to scan inputs and execute
all algorithms every 100 ms.

TRIG:TIMER 1 Set the module to scan inputs and execute
all algorithms every second.

TRIGger:TIMer[:PERiod]?

TRIGger:TIMer[:PERiod]? returns the currently set Trigger Timer interval.

Comments · Returned Value: Numeric 1 through 6.5536. The C-SCPI type is float32.

· Related Commands: TRIG:TIMER

· *RST Condition: 1.0E-4

Usage TRIG:TIMER? Query trig timer.

enter statement Returns the timer setting.

TRIGger

Chapter 6 VT1415A Command Reference 275

Common Command Reference

The following reference discusses the VT1415A IEEE-488.2 Common commands.

*CAL?

Calibration command. The calibration command causes the Channel Calibration function to be
performed for every module channel. The Channel Calibration function includes calibration of A/D
Offset and Gain and Offset for all 64 channels. This calibration is accomplished using internal
calibration references. The *CAL? command causes the module to calibrate A/D offset and gain and
all channel offsets. This may take many minutes to complete. The actual time it will take the
VT1415A to complete *CAL? depends on the mix of SCPs installed. *CAL performs literally
hundreds of measurements of the internal calibration sources for each channel and must allow
seventeen time constants of settling wait each time a filtered channel’s calibrations source value is
changed. The *CAL procedure is internally very sophisticated and results in an extremely well
calibrated module.

To perform Channel Calibration on multiple VT1415As, use CAL:SETup.

· Returned Value:

Value Meaning Further Action

0 Cal OK None

-1 Cal Error Query the Error Queue (SYST:ERR?)
See Error Messages in Appendix B

The C-SCPI type for this returned value is int16.

· When Accepted: Not while INITiated

· Related Commands: CALibration:SETup, CALibration:SETup?,
CALibration:STORe ADC

· CAL:STOR ADC stores the calibration constants for *CAL? and CAL:SETup
into non-volatile memory.

· Executing this command does not alter the module’s programmed state
(function, range, etc.). It does however clear STAT:QUES:COND? register bit
13.

NOTE If Open Transducer Detect (OTD) is enabled when *CAL? is executed, the module
will disable OTD, wait 1 minute to allow channels to settle, perform the calibration
and then re-enable OTD. If a program turns off OTD before executing *CAL?, it
should also wait 1 minute for settling.

Common Command Reference

276 VT1415A Command Reference Chapter 6

*CLS

Clear Status Command. The *CLS command clears all status event registers
(Standard Event Status Event Register, Standard Operation Status Event Register,
Questionable Data Event Register) and the instrument’s error queue. This clears the
corresponding summary bits (bits 3, 5, and 7) in the Status Byte Register. *CLS
does not affect the enable bits in any of the status register groups. (The SCPI
command STATus:PRESet does clear the Operation Status Enable and Questionable
Data Enable registers.) *CLS disables the Operation Complete function (*OPC
command) and the Operation Complete Query function (*OPC? command).

*DMC <name>,<cmd_data>

Define Macro Command. Assigns one or a sequence of commands to a named
macro.

The command sequence may be composed of SCPI and/or Common commands.

<name> may be the same as a SCPI command, but may not be the same as a
Common command. When a SCPI named macro is executed, the macro rather than
the SCPI command is executed. To regain the function of the SCPI command,
execute *EMC 0 command.

<cmd_data> is sent as arbitrary block program data (see page 156).

*EMC

Enable Macro Command. When <enable> is non-zero, macros are enabled. When
<enable> is zero, macros are disabled.

*EMC?

Enable Macro query. Returns either 1 (macros are enabled) or 0 (macros are
disabled).

*ESE <mask>

Standard Event Status Enable Register Command. Enables one or more events in the
Standard Event Status Register to be reported in bit 5 (the Standard Event Status
Summary Bit) of the Status Byte Register. An event is enabled by specifying its
decimal weight for <mask>. To enable more than one event (bit), specify the sum of
the decimal weights. The C-SCPI type for <mask> is int16.

Bit # 7 6 5 4 3 2 1 0

Weighted Value 128 64 32 16 8 4 2 1

Event Power-On User
Request

Command
Error

Execution
Error

Device
Dependent Error

Query
Error

Request
Control

Operation
Complete

Common Command Reference

Chapter 6 VT1415A Command Reference 277

*ESE?

Standard Event Status Enable Query. Returns the weighted sum of all enabled
(unmasked) bits in the Standard Event Status Register. The C-SCPI type for this
returned value is int16.

*ESR?

Standard Event Status Register Query. Returns the weighted sum of all set bits in
the Standard Event Status Register. After reading the register, *ESR? clears the
register. The events recorded in the Standard Event Status Register are independent
of whether or not those events are enabled with the *ESE command to set the
Standard Event Summary Bit in the Status Byte Register. The Standard Event bits
are described in the *ESE command. The C-SCPI type for this returned value is
int16.

*GMC? <name>

Get Macro query. Returns arbitrary block response data which contains the
command or command sequence defined for <name>. For more information on
arbitrary block response data see page 156.

*IDN?

Identity. Returns the device identity. The response consists of the following four
fields (fields are separated by commas):

· Manufacturer
· Model Number
· Serial Number (returns 0 if not available)
· Driver Revision (returns 0 if not available)

*IDN? returns the following response strings depending on model and options:
Agilent,E1415B,<serial number>,<revision number>

· The C-SCPI type for this returned value is string.

NOTE The revision will vary with the revision of the driver software installed in the
system. This is the only indication of which version of the driver is installed.

Common Command Reference

278 VT1415A Command Reference Chapter 6

*LMC?

Learn Macros query. Returns a quoted string name for each currently defined
macro. If more than one macro is defined, the strings are separated by commas (,). If
no macro is defined, *LMC? returns a null string.

*OPC

Operation Complete. Causes an instrument to set bit 0 (Operation Complete
Message) in the Standard Event Status Register when all pending operations
invoked by SCPI commands have been completed. By enabling this bit to be
reflected in the Status Byte Register (*ESE 1 command), synchronization can be
ensured between the instrument and an external computer or between multiple
instruments.

NOTE Do not use *OPC to determine when the CAL:SETUP or CAL:TARE commands
have completed. Instead, use their query forms CAL:SETUP? or CAL:TARE?.

*OPC?

Operation Complete Query. Causes an instrument to place a 1 into the instrument’s
output queue when all pending instrument operations invoked by SCPI commands
are finished. By requiring the computer to read this response before continuing
program execution, synchronization can be ensured between one or more
instruments and the computer. The C-SCPI type for this returned value is int16.

NOTE Do not use *OPC? to determine when the CAL:SETUP or CAL:TARE commands
have completed. Instead, use their query forms CAL:SETUP? or CAL:TARE?.

*PMC

Purge Macros Command. Purges all currently defined macros.

*RMC <name>

Remove individual Macro Command. Removes the named macro command.

Chapter 6 VT1415A Command Reference 279

*RST

Reset Command. Resets the VT1415A as follows:

· Erases all algorithms
· All elements in the Input Channel Buffer (I100 - I163) set to zero.
· All elements in the Output Channel Buffer (O100-O163) set to zero
· Defines all Analog Input channels to measure voltage
· Configures all Digital I/O channels as inputs
· Resets VT1531A and VT1532A Analog Output SCP channels to zero
· When Accepted: Not while INITiated

WARNING Note the change in character of output channels when *RST is received. Digital
outputs change to inputs (appearing now is 1 kW to +3 V, a TTL one) and
analog control outputs change to zero (current or voltage). Keep these changes
in mind when applying the VT1415A to a system or engineering a system for
operation with the VT1415A. Also, note that each analog output channels
disconnects for 5-6 milliseconds to discharge to zero at each *RST.

It isn’t difficult to have the VT1415A signal a system when *RST is executed. A
solution that can provide signals for several types of failures as well as
signaling when *RST is executed is the Agilent/HP E1535 Watchdog Timer
SCP. The Watchdog SCP even has an input through which all of the
VT1415A’s channels can be commanded to disconnect from the system.

· Sets the trigger system as follows:
– TRIGGER:SOURCE TIMER
– TRIGGER:TIMER 10E-3
– TRIGGER:COUNT 0 (infinite)
– ARM:SOURCE IMMEDIATE

· SAMPLE:TIMER 10E-6
· Aborts all pending operations, returns to Trigger Idle state
· Disables the *OPC and *OPC? modes
· MEMORY:VME:ADDRESS 240000; MEMORY:VME:STATE OFF;

MEMORY:VME:SIZE 0
· Sets STAT:QUES:COND? bit 13

*RST does not affect:

· Calibration data
· The output queue
· The Service Request Enable (SRE) register
· The Event Status Enable (ESE) register

Common Command Reference

280 VT1415A Command Reference Chapter 6

*SRE <mask>

Service Request Enable. When a service request event occurs, it sets a
corresponding bit in the Status Byte Register (this happens whether or not the event
has been enabled (unmasked) by *SRE). The *SRE command allows events to be
identified which will assert a GPIB service request (SRQ). When an event is
enabled by *SRE and that event occurs, it sets a bit in the Status Byte Register and
issues an SRQ to the computer (sets the GPIB SRQ line true). An event is enabled
by specifying its decimal weight for <mask>. To enable more than one event,
specify the sum of the decimal weights. Refer to “The Status Byte Register” for a
table showing the contents of the Status Byte Register. The C-SCPI type for
<mask> is int16.

Bit # 7 6 5 4 3 2 1 0

Weighted
Value

128 64 32 16 8 4 2 1

Event Operation
Status

Request
Service

Standard
Event

Message
Available

Questionable
Status

not used not used not used

*SRE?

Status Register Enable Query. Returns the weighted sum of all enabled (unmasked)
events (those enabled to assert SRQ) in the Status Byte Register. The C-SCPI type
for this returned value is int16.

*STB?

Status Byte Register Query. Returns the weighted sum of all set bits in the Status
Byte Register. Refer to the *ESE command earlier in this chapter for a table
showing the contents of the Status Byte Register. *STB? does not clear bit 6
(Service Request). The Message Available bit (bit 4) may be cleared as a result of
reading the response to *STB?. The C-SCPI type for this returned value is int16.

*TRG

Trigger. Triggers an instrument when the trigger source is set to bus (TRIG:SOUR
BUS command) and the instrument is in the Wait for Trigger state.

*TST?

Self-Test. Causes an instrument to execute extensive internal self-tests and
returns a response showing the results of the self-test.

NOTES 1. During the first 5 minutes after power is applied, *TST? may fail. Allow the
module to warm-up before executing *TST?.

Chapter 6 VT1415A Command Reference 281

2. Module must be screwed securely to mainframe.

3. The VT1415A C-SCPI driver for MS-DOS® implements two versions of *TST.
The default version is an abbreviated self test that executes only the Digital
Tests. By loading an additional object file, the full self test can be executed as
described below. See the documentation that comes with the VT1415A C-SCPI
driver for MS-DOS®.

Comments · Returned Value:

Value Meaning Further Action

0 *TST? OK None

-1 *TST? Error Query the Error Queue (SYST:ERR?)
for error 3052. See explanation below.

· IF error 3052 ‘Self test failed. Test info in FIFO’ is returned. A FIFO value of 1
through 99 or ³ 300 is a failed test number. A value of 100 through 163 is a
channel number for the failed test. A value of 200 through 204 is an A/D range
number for the failed test where 200 = 0.0625, 201 = 0.25 V, 202 = 1 V, 203 =
4 V and 204 = 16 V ranges. For example DATA:FIFO? returns the values 72
and 108. This indicates that test number 72 failed on channel 8.

Test numbers 20, 30-37, 72, 74-76, and 80-93 may indicate a problem with a
Signal Conditioning Plug-On.

For tests 20 and 30-37, remove all SCPs and see if *TST? passes. If so, replace
SCPs one at a time until the one causing the problem is found.

For tests 72, 74-76, and 80-93, try to re-seat the SCP that the channel number(s)
points to or move the SCP and see if the failure(s) follow the SCP. If the
problems move with the SCP, replace the SCP.

These are the only tests where the user should troubleshoot a problem. Other
tests which fail should be referred to qualified repair personnel.

NOTE Executing *TST? returns the module to its *RST state. *RST causes the FIFO data
format to return to its default of ASC,7. To read the FIFO for *TST? diagnostic
information and have data in a format other than ASCII,7, make certain that the data
FIFO format is set to the desired format (FORMAT command) after completion of
*TST? but before executing a SENSE:DATA:FIFO? query command.

· The C-SCPI type for this returned value is int16.

· Following *TST?, the module is placed in the *RST state. This returns many of
the module’s programmed states to their defaults. See page 55 for a list of the
module’s default states.

Common Command Reference

282 VT1415A Command Reference Chapter 6

· *TST? performs the following tests on the VT1415A and installed Signal
Conditioning Plug-Ons:

DIGITAL TESTS:

Test# Description

1-3: Writes and reads patterns to registers via A16 & A24
4-5: Checks FIFO and CVT
6: Checks measurement complete (Measuring) status bit
7: Checks operation of FIFO half and FIFO full IRQ generation
8-9: Checks trigger operation

ANALOG FRONT END DIGITAL TESTS:

Test# Description

20: Checks that SCP ID makes sense
30-32: Checks relay driver and fet mux interface with EU CPU
33,71: Checks opening of all relays on power down or input over-voltage
34-37: Check fet mux interface with A/D digital

ANALOG TESTS:

Test# Description

40-42: Checks internal voltage reference
43-44: Checks zero of A/D, internal cal source and relay drives
45-46: Checks fine offset calibration DAC
47-48: Checks coarse offset calibration DAC
49: Checks internal + and -15V supplies
50-53: Checks internal calibration source
54-55: Checks gain calibration DAC
56-57: Checks that autorange works
58-59: Checks internal current source
60-63: Checks front end and A/D noise and A/D filter
64: Checks zeroing of coarse and fine offset calibration DACs
65-70: Checks current source and CAL BUS relay and relay drives and OHM

relay drive
71: See 33
72-73: Checks continuity through SCPs, bank relays and relay drivers
74: Checks open transducer detect
75: Checks current leakage of the SCPs
76: Checks voltage offset of the SCPs
80: Checks mid-scale strain dac output. Only reports first channel of SCP.
81: Checks range of strain dac. Only reports first channel of SCP.
82: Checks noise of strain dac. Only reports first channel of SCP.
83: Checks bridge completion leg resistance each channel.
84: Checks combined leg resistance each channel.
86: Checks current source SCP’s OFF current.
87: Checks current source SCP’s current dac mid-scale.
88: Checks current source SCP’s current dac range on HI and LO ranges.

Common Command Reference

Chapter 6 VT1415A Command Reference 283

89: Checks current source compliance
90: Checks strain SCP’s Wagner Voltage control.
91: Checks autobalance dac range with input shorted.

ANALOG TESTS: (continued)

92: Sample and Hold channel holds value even when input value changed.
93: Sample and Hold channel held value test for droop rate.

ANALOG OUTPUT AND DIGITAL I/O TESTS

301: Current and Voltage Output SCPs digital DAC control.
302: Current and Voltage Output SCPs DAC noise.

303: Current Output SCP offset
304: Current Output SCP gain shift
305: Current Output SCP offset
306: Current Output SCP linearity
307: Current Output SCP linearity
308: Current Output SCP turn over

313: Voltage Output SCP offset
315: Voltage Output SCP offset
316: Voltage Output SCP linearity
317: Voltage Output SCP linearity
318: Voltage Output SCP turn over

331: Digital I/O SCP internal digital interface
332: Digital I/O SCP user input
333: Digital I/O SCP user input
334: Digital I/O SCP user output
335: Digital I/O SCP user output
336: Digital I/O SCP output current
337: Digital I/O SCP output current

341: Freq/PWM/FM SCP internal data0 register
342: Freq/PWM/FM SCP internal data1 register
343: Freq/PWM/FM SCP internal parameter register
344: Freq/PWM/FM SCP on-board processor self-test
345: Freq/PWM/FM SCP on-board processor self-test
346: Freq/PWM/FM SCP user inputs
347: Freq/PWM/FM SCP user outputs
348: Freq/PWM/FM SCP outputs ACTive/PASSive
349: Freq/PWM/FM SCP output interrupts

350: Watchdog SCP enable/disable timer
351: Watchdog SCP relay drive and coil closed
352: Watchdog SCP relay drive and coil open
353: Watchdog SCP I/O Disconnect line

Common Command Reference

284 VT1415A Command Reference Chapter 6

354: Watchdog SCP I/O Disconnect supply

*WAI

Wait-to-continue. Prevents an instrument from executing another command until the
operation begun by the previous command is finished (sequential operation).

NOTE Do not use *WAI to determine when the CAL:SETUP or CAL:TARE commands
have completed. Instead, use their query forms CAL:SETUP? or CAL:TARE?.
CAL:SETUP? and CAL:TARE? return a value only after the CAL:SETUP or
CAL:TARE operations are complete.

Common Command Reference

Chapter 6 VT1415A Command Reference 285

 Command Quick Reference

The following tables summarize SCPI and IEEE-488.2 Common (*) commands for
the VT1415A Algorithmic Loop Controller.

SCPI Command Quick Reference

Command Description
ABORt Stops scanning immediately and sets trigger system to idle state (scan

lists are unaffected)

ALGorithm Subsystem to define, configure and enable loop control algorithms

[:EXPLicit]

:ARRay <alg_name>,<array_name>,<block_data> Defines contents of array <array_name> in algorithm <alg_name> or if

<alg_name> is “GLOBALS”, defines values global to all algorithms.

:ARRay? <alg_name>,<array_name> Returns block data from <array_name> in algorithm <alg_name> or if

<alg_name> is “GLOBALS”, returns values from a global array.

:DEFine <alg_name>[,<swap_size>],<program_data> Defines algorithms or global variables. <program_data> is ‘C’ source of

algorithm or global declaration.

:SCALar <alg_name>,<var_name>,<value> Defines value of variable <var_name> in algorithm <alg_name> or if

<alg_name> is “GLOBALS”, defines a value global to all algorithms.

:SCALar? <alg_name>,<var_name> Returns value from <var_name> in algorithm <alg_name> or if

<alg_name> is “GLOBALS”, returns a value from global variable.

:SCAN

:RATio <alg_name>,<ratio> Sets scan triggers per execution of <alg_name> (send also ALG:UPD)

:RATio? <alg_name> Returns scan triggers per execution of <alg_name>

:SIZe? <alg_name> Returns size in words of named algorithm

:STATe <alg_name>,ON | OFF Enables/disables named algorithm after ALG:UPDATE sent

:STATe? <alg_name> Returns state of named algorithm

:TIMe? <alg_name> | MAIN Returns worst case alg execution time. Use “MAIN” for overall time.

:FUNCtion

:DEFine <function_name>,<range>,<offset>,<func_data> Defines a custom conversion function

:OUTPut

:DELay <delay> | AUTO Sets the delay from scan trigger to start of outputs

:DELay? Returns the delay from scan trigger to start of outputs

:UPDate

[:IMMediate] Requests immediate update of algorithm code, variable, or array

:CHANnel (@<channel> Sets dig channel to synch algorithm updates

:WINDow <num_updates> Sets a window for num_updates to occur. *RST default is 20

:WINDow? Returns setting for allowable number variable and algorithm updates.

ARM

[:IMMediate] Arm if ARM:SOUR is BUS or HOLD (software ARM)

:SOURce BUS | EXT | HOLD | IMM | SCP | TTLTrg<n> Specify the source of Trigger Timer ARM

:SOURce? Return current ARM source

CALibration

:CONFigure Prepare to measure on-board references with an external multimeter

:RESistance Configure to measure reference resistor

:VOLTage <range>, ZERO | FSCale Configure to measure reference voltage range at zero or full scale

:SETup Performs Channel Calibration procedure

:SETup? Returns state of CAL:SETup operation (returns error codes or 0 for OK)

:STORe ADC | TARE Store cal constants to Flash RAM for either A/D calibration or those

generated by the CAL:TARE command

 Command Quick Reference

286 VT1415A Command Reference Chapter 6

SCPI Command Quick Reference

Command Description
CALibration (cont.)

:TARE (@<ch_list>) Calibrate out system field wiring offsets

:RESet Resets cal constants from CAL:TARE back to zero for all channels

:TARE? Returns state of CAL:TARE operation (returns error codes or 0 for OK)

:VALue

:RESistance <ref_ohms> Send to instrument the value of just measured reference resistor

:VOLTage <ref_volts> Send to instrument the value of just measured voltage reference

:ZERO? Correct A/D for short term offset drift (returns error codes or 0 for OK)

DIAGnostic

:CALibration

:SETup

[:MODE] 0 | 1 Set analog DAC output SCP calibration mode

[:MODE]? Return current setting of DAC calibration mode

:TARe

[:OTD]

[:MODE] 0 | 1 Set mode to control OTD current during tare calibration

[:MODE]? Return current setting of OTD control during tare calibration

:CHECksum? Perform checksum on Flash RAM and return a ‘1’ for OK, a ‘0’ for

corrupted or deleted memory contents

:COMMand

:SCPWRITE <reg_addr>,<reg_data> Writes values to SCP registers

:CUSTom

:LINear <table_ad_range>,<table_block>,(@<ch_list>) Loads linear custom EU table

:PIECewise <table_ad_range>,<table_block>,(@<ch_list>) Loads piecewise custom EU table

:REFerence:TEMPerature Puts the contents of the Reference Temperature Register into the FIFO

:INTerrupt[:LINe] <intr_line> Sets the VXIbus interrupt line the module will use

:INTerrupt[:LINe]? Returns the VXIbus interrupt line the module is using

:OTDetect[:STATe] ON | OFF, (@<ch_list>) Controls “Open Transducer Detect” on SCPs contained in <ch_list>

:OTDetect[:STATe]? (@<channel>) Returns current state of OTD on SCP containing <channel>

:QUERy

:SCPREAD? <reg_addr> Returns value from an SCP register

:VERSion? Returns manufacturer, model, serial#, flash revision # and date

e.g. Agilent,E1415B,US34000478,A.04.00, Wed Jul 08 11:06:22 MDT

1994

FETCh? Return readings stored in VME Memory (format set by FORM cmd)

FORMat

[:DATA] <format>[, <size>] Set format for response data from [SENSe:]DATA?

 ASCii[, 7] Seven bit ASCII format (not as fast as 32-bit because of conversion)

 PACKed[, 64] Same as REAL, 64 except NaN, +INF and -INF format compatible with

Agilent BASIC

 REAL[, 32] IEEE 32-bit floating point (requires no conversion so is fastest)

 REAL, 64 IEEE 64-bit floating point (not as fast as 32-bit because of conversion)

[:DATA]? Returns format: REAL

INITiate

[:IMMediate] Put module in Waiting for Trigger state (ready to make one scan)

INPut

:FILTer Control filter Signal Conditioning Plug-Ons

[:LPASs]

:FREQuency <cutoff_freq>,(@<ch_list>) Sets the cutoff frequency for active filter SCPs

:FREQuency? (@<channel>) Returns the cutoff frequency for the channel specified

Chapter 6 VT1415A Command Reference 287

SCPI Command Quick Reference

Command Description
[:STATe] ON | OFF, (@<channel>) Turn filtering OFF (pass through) or ON (filter)

[:STATe]? (@<channel>) Return state of SCP filters

:GAIN <chan_gain>,(@<ch_list>) Set gain for amplifier-per-channel SCP

:GAIN? (@<channel>) Returns the channel’s gain setting

:LOW <wvolt_type>,(@<ch_list>) Controls the connection of input LO on a Strain Bridge (Opt. 21 SCP)

:LOW? (@<channel>) Returns the LO connection for the Strain Bridge at channel

:POLarity NORmal | INVerted,(@<ch_list>) Sets input polarity on a digital SCP channel

:POLarity? (@<channel>) Returns digital polarity currently set for <channel

MEMory

:VME

:ADDRess <mem_address> Specify address of VME memory card to be used as reading storage

:ADDRess? Returns address of VME memory card

:SIZE <mem_size> Specify number of bytes of VME memory to be used to store readings

:SIZE? Returns number of VME memory bytes allocate to reading storage

:STATe 1 | 0 | ON | OFF Enable or disable reading storage in VME memory at INIT

:STATe? Returns state of VME memory, 1=enabled, 0=disabled

OUTPut

:CURRent

:AMPLitude <amplitude>,(@<ch_list>) Set amplitude of Current Source SCP channels

:AMPLitude? (@<channel>) Returns the setting of the Current Source SCP channel

:STATe ON | OFF,(@<ch_list>) Enable or disable the Current Source SCP channels

:STATe? (@<channel>) Returns the state of the Current Source SCP channel

:POLarity NORmal | INVerted,(@<ch_list>) Sets output polarity on a digital SCP channel

:POLarity? (@<channel>) Returns digital polarity currently set for <channel>

:SHUNt ON | OFF,(@<ch_list>) Adds shunt resistance to leg of Bridge Completion SCP channels

:SHUNt? (@<channel>) Returns the state of the shunt resistor on Bridge Completion SCP

channel

:TTLTrg

:SOURce FTRigger | LIMit | SCPlugon | TRIGger Sets the internal trigger source that can drive the VXIbus TTLTrg lines

:SOURce? Returns the source of TTLTrg drive.

:TTLTrg<n>

[:STATe] ON | OFF When module triggered, source a VXIbus trigger on TTLTrg<n>

[:STATe]? Returns whether the TTL trigger line specified by n is enabled

:TYPE PASSive | ACTive,(@<ch_list>) sets the output drive type for a digital channel

:TYPE? (@<channel>) Returns the output drive type for <channel>

:VOLTage

:AMPLitude <amplitude>,(@<ch_list>) Sets the voltage amplitude on Voltage Output and Strain SCPs

:AMPLitude? (@<channel>) Returns the voltage amplitude setting

ROUTe

:SEQuence

:DEFine? AIN | AOUT | DIN | DOUT Returns comma separated list of channels in analog I, O, dig I, O ch lists

:POINts? AIN | AOUT | DIN | DOUT Returns number of channels defined in above lists.

SAMPle

:TIMer <num_samples>,(@<ch_list>) Sets number of samples that will be made on channels in <ch_list>

:TIMer? (@<channel>) Returns number of samples that will be made on channels in <ch_list>

[SENSe:]

CHANnel

:SETTling <settle_time>,(@<ch_list>) Sets the channel settling time for channels in ch_list

:SETTling? (@<channel>) Returns the channel settling time for channel

DATA

:CVTable? (@<ch_list>) Returns elements of Current Value Table specified by ch_list

:RESet Resets all entries in the Current Value Table to IEEE “Not-a-number”

:FIFO

 Command Quick Reference

288 VT1415A Command Reference Chapter 6

SCPI Command Quick Reference

Command Description
[:ALL]? Fetch all readings until instrument returns to trigger idle state

:COUNt? Returns the number of measurements in the FIFO buffer

:HALF? Returns 1 if at least 32,768 readings are in FIFO, else returns 0

:HALF? Fetch 32,768 readings (half the FIFO) when available

:MODE BLOCK | OVERwrite Set FIFO mode.

:MODE? Return the currently set FIFO mode

:PART? <n_readings> Fetch n_readings from FIFO reading buffer when available

:RESet Reset the FIFO counter to 0

FREQuency

:APERture <gate_time>,(@<ch_list>) Sets the gate time for frequency counting

:APERture? (@<channel>) Returns the gate time set for frequency counting

FUNCtion Equate a function and range with groups of channels

:CONDition (@<ch_list>) Sets function to sense digital state

:CUSTom [<range>,](@<ch_list>) Links channels to custom EU conversion table loaded by

DIAG:CUST:LIN or DIAG:CUST:PIEC commands

:REFerence [<range>,](@<ch_list>) Links channels to custom reference temperature EU conversion table

loaded by DIAG:CUST:PIEC commands

:TC <type>,[<range>,](@<ch_list>) Links channels to custom temperature EU conversion table loaded by

DIAG:CUST:PIEC and performs ref temp compensation for <type>

:FREQuency (@<ch_list>) Configure channels to measure frequency

:RESistance <excite_current>,[<range>,](@<ch_list>) Configure channels to sense resistance measurements

:STRain Links measurement channels as having read bridge voltage from:

:FBENding [<range>,](@<ch_list>) Full BENding

:FBPoisson [<range>,](@<ch_list>) Full Bending Poisson

:FPOisson [<range>,](@<ch_list>) Full POisson

:HBENding [<range>,](@<ch_list>) Half BENding

:HPOisson [<range>,](@<ch_list>) Half Poisson

[:QUARter] [<range>,](@<ch_list>) QUARter

RTD 85 | 92

TCouple, CUST | E | EEXT | J | K | N | S | T thermocouples

THERmistor 2250 | 5000 | 10000

:TEMPerature <sensor_type>,<sub_type>,

[<range>,](@<ch_list>)

Configure channels for temperature measurement types above:

excitation current comes from Current Output SCP.

:TOTalize (@<ch_list>) Configure channels to count digital state transitions

:VOLTage[:DC] [<range>,](@<ch_list>) Configure channels for dc voltage measurement

RTD, 85 | 92 RTDs

THERmistor,5000 thermistors

:REFerence <sensor_type>,<sub_type>,[<range>,](@<ch_list>) Configure channel for reference temperature measurements above:

:CHANnels (@<ref_channel>),(@<ch_list>) Groups reference temperature channel with TC measurement channels

:TEMPerature <degrees_c> Specifies the temperature of a controlled temperature reference junction

:STRain

:EXCitation <excite_v>,(@<ch_list>) Specifies the Excitation Voltage by channel to the strain EU conversion

:STRain

:EXCitation <excite_v>,(@<ch_list>) Specifies the Excitation Voltage by channel to the strain EU conversion

:EXCitation? (@<channel>) Returns the Excitation Voltage set for <channel>

:GFACtor <gage_factor>,(@<ch_list>) Specifies the Gage Factor by channel to the strain EU conversion

:GFACtor? (@<channel>) Returns the Gage Factor set for <channel>

:POISson <poisson_ratio>,(@<ch_list>) Specifies the Poisson Ratio by channel to the strain EU conversion

 Command Quick Reference

Chapter 6 VT1415A Command Reference 289

SCPI Command Quick Reference

Command Description
[SENSe:]STRAin (continued)

:POISson? (@<channel>) Returns the Poisson Ratio set for <channel>

:UNSTrained <unstrained_v>,(@<ch_list>) Specifies the Unstrained Voltage by channel to the strain EU conversion

:UNSTrained? (@<channel>) Returns the Unstrained Voltage set for <channel>

SOURce

:FM

[:STATe] 1 | 0 | ON | OFF,(@<ch_list>) Configure digital channels to output frequency modulated signal

[:STATe]? (@<channel>) Returns state of channels for FM output

:FUNCtion

[:SHAPe]

:CONDition (@<ch_list>) Configures channels to output static digital levels

:PULSe (@<ch_list>) Configures channels to output digital pulse(s)

:SQUare (@<ch_list>) Configures channels to output 50/50 duty cycle digital pulse train

:PULM

:STATe 1 | 0 | ON | OFF,(@<ch_list>) Configure digital channels to output pulse width modulated signal

:STATe? (@<channel>) Returns state of channels for PW modulated output

:PERiod <period>,(@<ch_list>) Sets pulse period for PW modulated signals

:PERiod? ,(@<channel>) Returns pulse period for PW modulated signals

:WIDTh <width>,(@<ch_list>) Sets pulse width for FM modulated signals

:WIDTh? (@<channel>) Returns pulse width setting for FM modulated signals

STATus

:OPERation Operation Status Group: Bit assignments; 0=Calibrating, 4=Measuring,

8=Scan Complete, 10=FIFO Half Full, 11=algorithm interrupt

:CONDition? Returns state of Operation Status signals

:ENABle <enable_mask> Bits set to 1 enable status events to be summarized into Status Byte

:ENABle? Returns the decimal weighted sum of bits set in the Enable register

[:EVENt]? Returns weighted sum of bits that represent Operation status events

:NTRansition <transition_mask> Sets mask bits to enable pos. Condition Reg. transitions to Event

reg

:NTRansition? Returns positive transition mask value

:PTRansition <transition_mask> Sets mask bits to enable neg. Condition Reg. transitions to Event

reg

:PTRansition? Returns negative transition mask value

:PRESet Presets both the Operation and Questionable Enable registers to 0

:QUEStionable Questionable Data Status Group: Bit assignments; 8=Calibration Lost,

9=Trigger Too Fast, 10=FIFO Overflowed, 11=Over voltage, 12=VME

Memory Overflow, 13=Setup Changed.

:CONDition? Returns state of Questionable Status signals

:ENABle <enable_mask> Bits set to 1 enable status events to be summarized into Status Byte

:ENABle? Returns the decimal weighted sum of bits set in the Enable register

[:EVENt]? Returns weighted sum of bits that represent Questionable Data

events

:NTRansition <transition_mask> Sets mask bits to enable pos. Condition Reg. transitions to Event

reg

:NTRansition? Returns positive transition mask value

:PTRansition <transition_mask> Sets mask bits to enable neg. Condition Reg. transitions to Event

reg

:PTRansition? Returns negative transition mask value

SYSTem

:CTYPe? (@<channel>) Returns the identification of the SCP at channel

:ERRor? Returns one element of the error queue “0" if no errors

 Command Quick Reference

290 VT1415A Command Reference Chapter 6

SCPI Command Quick Reference

Command Description
:VERSion? Returns the version of SCPI this instrument complies with

TRIGger

:COUNt <trig_count> Specify the number of trigger events that will be accepted

:COUNt? Returns the current trigger count setting

[:IMMediate] Triggers instrument when TRIG:SOUR is TIMer or HOLD (same as

*TRG and IEEE 488.1 GET commands.

:SOURce BUS | EXT | HOLD | IMM | SCP | TIMer | TTLTrg<n> Specify the source of instrument triggers

:SOURce? Returns the current trigger source

:TIMer Sets the interval between scan triggers when TRIG:SOUR is TIMer

[:PERiod] <trig_interval> Sets the interval between scan triggers when TRIG:SOUR is TIMer

[:PERiod]? Returns setting of trigger timer

 Command Quick Reference

Chapter 6 VT1415A Command Reference 291

IEEE-488.2 Common Command Quick Reference

Category Command Title Description

Calibration *CAL? Calibrate Performs internal calibration on all 64 channels out to the

terminal module connector. Returns error codes or 0 for OK

Internal

Operation

*IDN? Identification Returns the response: Agilent,E1415B,<serial#>,<driver

rev#>

*RST Reset Resets all scan lists to zero length and stops scan triggering.

Status registers and output queue are unchanged.

*TST? Self Test Performs self test. Returns 0 to indicate test passed.

Status Reporting *CLS Clear Status Clears all status event registers and so their status summary

bits (except the MAV bit).

*ESE <mask> Event Status Enable Set Standard Event Status Enable register bits mask.

*ESE? Event Status Enable query Return current setting of Standard Event Status Enable

register.

*ESR? Event Status Register query Return Standard Event Status Register contents.

*SRE <mask> Service Request Enable Set Service Request Enable register bit mask.

*SRE? Service Request Enable query Return current setting of the Service Request Enable register.

*STB? Read Status Byte query Return current Status Byte value.

Macros *DMC

<name>,<cmd_data>

Define Macro Command Assigns one or a sequence of commands to a macro.

*EMC 1 | 0 Enable Macro Command Enable/Disable defined macro commands.

*EMC? Enable Macros query Returns 1 for macros enabled, 0 for disabled.

*GMC? <name> Get Macro query Returns command sequence for named macro.

*LMC? Learn Macro query Returns comma-separated list of defined macro names

*PMC Purge Macro Commands Purges all macro commands

*RMC <name> Remove Individual Macro Removes named macro command.

Synchronization *OPC Operation Complete Standard Event register’s Operation Complete bit will be 1

when all pending device operations have been finished.

*OPC? Operation Complete query Places an ASCII 1 in the output queue when all pending

operations have finished.

*TRG Trigger Trigger s module when TRIG:SOUR is HOLD.

*WAI Wait to Complete

 Command Quick Reference

292 VT1415A Command Reference Chapter 6

Notes

 Command Quick Reference

Chapter 6 VT1415A Command Reference 293

Appendix A

Specifications

Power Requirements
(with no SCPs installed) +5 V +12 V -12 V +24 V -24 V -5.2 V

IPm=Peak Module Current IPm IDm IPm IDm IPm IDm IPm IDm IPm IDm IPm IDm

IDm=Dynamic Module Current 1.0 0.02 0.06 0.01 0.01 0.01 0.1 0.01 0.1 0.01 0.15 0.01

Cooling Requirements Average (watts/slot) D Pressure (mm H2O) Air Flow (liters/s)

14 0.08 0.08

Power Available for SCPs
(See VXI Catalog or SCP
manuals for SCP current)

1.0 A ± 24 V, 3.5 A 5 V

Measurement Ranges

dc volts (VT1501A or VT1502A) ±62.5 mV to ±16 V Full Scale

Temperature Thermocouples - -200 to +1700 °C
Thermistors - (Opt 15 required) -80 to +160 °C
RTD’s - (Opt 15 required) -200 to +850 °C

Resistance (VT1505A with VT1501A) 512 W to 131 kW FS)

Strain 25,000 µe or limit of linear range of strain gage

Measurement Resolution 16 bits (including sign)

Maximum Update Rate
(running PIDA algorithms)

1 Loop
8 Loops
32 Loops

2.5 kHz
1 kHz
250 Hz

Trigger Timer and
Sample Timer Accuracy

100 ppm (0.01%) from -10 °C to +70 °C

Appendix A Specifications 295

External Trigger Input TTL compatible input. Negative true edge triggered except first trigger will occur
if external trigger input is held low when module is INITiated. Minimum pulse
width 100 ns. Since each trigger starts a complete scan of 2 or more channel
readings, maximum trigger rate depends on module configuration.

Maximum Input Voltage
(Normal mode plus common mode)

With Direct Input, Passive Filter or Amplifier SCPs:
Operating: < ± 16 V peak Damage level: > ± 42 V peak

With VT1513A, Divide by 16 Attenuator SCP:
Operating: < ± 60 V dc, < ± 42 V peak

Maximum Common Mode
Voltage

With Direct Input, Passive Filter or Amplifier SCPs:
Operating: < ±16 V peak Damage level: > ±42 V peak

With VT1513A Divide by 16 Attenuator SCP:
Operating: < ± 60 V dc, < ± 42 V peak

Common Mode Rejection 0 to 60 Hz -105 dB

Input Impedance greater than 90 MW differential
(1 MW with VT1513A Attenuator)

On-Board Current Source 122 µA ± 0.02%, with ± 17 volts Compliance

Maximum Tare Cal Offset SCP Gain = 1 (Maximum tare offset depends on A/D range and SCP gain)

A/D range
± V F.Scale

16 4 1 0.25 0.0625

Max Offset 3.2213 0.82101 0.23061 0.07581 0.03792

The following specifications reflect the performance of the VT1415A with the VT1501A Direct Input Signal Conditioning
Plug-On. The performance of the VT1415A with other SCPs is found in the Specifications section of that SCP’s manual.

Measurement Accuracy
dc volts

(90 days) 20 °C ± 1 °C (with *CAL? done after 1 hr warm up and CAL:ZERO? within 5 min)

Note: If autoranging is ON for readings < 3.8 V, add ±0.02% to linearity specifications
 for readings > 3.8 V, add ±0.05% to linearity specifications.

A/D range
± V F.Scale

Linearity
% of reading

Offset Error Noise
3 sigma

Noise*
3 sigma

0.0625
0.25

1
4
16

0.01%
0.01%
0.01%
0.01%
0.01%

 5.3 µV
10.3 µV
31 µV
122 µV
488 µV

18 µV
45 µV
110 µV
450 µV
1.8 mV

8 µV
24 µV
90 µV
366 µV
1.5 mV

Temperature Coefficients: Gain - 10 ppm/°C. Offset - (0 - 40 °C) 0.14 µV/°C, (40 - 55 °C) 0.8 µV+0.38 µV/°C

296 Specifications Appendix A

Temperature Accuracy The following pages have temperature accuracy graphs that include instrument
and firmware linearization errors. The linearization algorithm used is based on
the IPTS-68(78) standard transducer curves. Add the custom transducer's
accuracy to determine total measurement error.

The thermocouple graphs on the following pages include only the errors due to
measuring the voltage output of the thermocouple, as well as the algorithm
errors due to converting the thermocouple voltage to temperature. To this error
must be added the error due to measuring the reference junction temperature
with an RTD or a 5k thermistor. See the graphs for the RTD or the 5k thermistor
to determine this additional error. Also, the errors due to gradients across the
isothermal reference must be added. If an external isothermal reference panel
is used, consult the manufacturer’s specifications. If VXI Technology
termination blocks are used as the isothermal reference, see the notes below.

NOTE

1) When using the Terminal Module as the isothermal reference, add ±0.6 °C to
the thermocouple accuracy specs to account for temperature gradients across
the Terminal Module. The ambient temperature of the air surrounding the
Terminal Module must be within ±2 °C of the temperature of the inlet cooling air
to the VXI mainframe.

2) When using the VT1586A Rack-Mount Terminal Panel as the isothermal
reference, add ±0.2 °C to the thermocouple accuracy specs to account for
temperature gradients across the VT1586A. The VT1586A should be mounted
in the bottom part of the rack, below, and away from other heat sources for best
performance.

The temperature graphs are found on the following pages:

· Thermocouple Type E (-200 to 800 °C) . 298,299

· Thermocouple Type E (0 to 800 °C) . 300,301

· Thermocouple Type EEXtended . 302,303

· Thermocouple Type J . 304,305

· Thermocouple Type K . 306

· Thermocouple Type R . 307,308

· Thermocouple Type S . 309,262

· Thermocouple Type T . 311,312

· Reference Thermistor 5k . 313,314

· Reference RTD 100 W . 315

· RTD 100 W . 316,317

· Thermistor 2250 W . 318,319

· Thermistor 5 kW . 320,321

· Thermistor 10 kW . 322,323

Appendix A Specifications 297

298 Specifications Appendix A

Type E -200 to 800 °C filter off

Appendix A Specifications 299

Type E -200 to 800 °C filter off (E1508/09)

300 Specifications Appendix A

Type E 0 to 800 °C filter off

Appendix A Specifications 301

Type E 0 to 800 °C filter off (VT1508A/09A)

302 Specifications Appendix A

Type EEXtended filter off

Appendix A Specifications 303

Type EEXtended filter off (VT1508A/09A)

304 Specifications Appendix A

Type J filter off

Appendix A Specifications 305

Type J filter off (VT1508A/09A)

306 Specifications Appendix A

Type K filter off

Appendix A Specifications 307

Type R filter off

308 Specifications Appendix A

Type R filter off (VT1508A/09A)

Appendix A Specifications 309

Type S filter off

310 Specifications Appendix A

Type S filter off (VT1508A/09A)

Appendix A Specifications 311

Type T filter off

312 Specifications Appendix A

Type T filter off (VT1508A/09A)

Appendix A Specifications 313

Reference Thermistor 5 kW filter off

314 Specifications Appendix A

Reference Thermistor 5 kW filter off (VT1508A/09A)

Appendix A Specifications 315

Reference RTD filter off

316 Specifications Appendix A

RTD filter off

Appendix A Specifications 317

RTD filter off (VT1508A/09A)

318 Specifications Appendix A

Thermistor 2250 W filter off

Appendix A Specifications 319

Thermistor 2250 W filter off (VT1508A/09A)

320 Specifications Appendix A

Thermistor 5 kW filter off

Appendix A Specifications 321

Thermistor 5 kW filter off (VT1508A/09A)

322 Specifications Appendix A

Thermistor 10 kW filter off

Appendix A Specifications 323

Thermistor 10 kW filter off (VT1508A/09A)

324 Specifications Appendix A

Appendix B

Error Messages

Possible Error Messages:

-108 ‘Parameter not allowed.’

-109 ‘Missing parameter.’

-160 ‘Block data error.’

-211 ‘Trigger ignored.’

-212 ‘Arm ignored.’

-213 ‘Init ignored.’

-221 ‘Settings conflict.’

-222 ‘Data out of range.’

-224 ‘Illegal parameter value.’

-240 ‘Hardware error.’ Execute *TST?.

-253 ‘Corrupt media.’

-281 ‘Cannot create program.’

-282 ‘Illegal program name.’

-310 ‘System error.’

-410 ‘Query INTERRUPTED.’

1000 ‘Out of memory.’

2001 ‘Invalid channel number.’

2003 ‘Invalid word address.’

2007 ‘Bus error.’

2008 ‘Scan list not initialized.’

2009 ‘Too many channels in channel list.’

2016 ‘Byte count is not a multiple of two.’

3000 ‘Illegal while initiated.’ Operation must be performed
before INIT or INIT:CONT ON.

Appendix B Error Messages 325

3004 ‘Illegal command. CAL:CONF not sent.’ Incorrect
sequence of calibration commands. Send
CAL:CONF:VOLT command before CAL:VAL:VOLT
and send CAL:CONF:RES command before
CAL:VAL:RES.

3005 ‘Illegal command. Send CAL:VAL:RES.’ The only
command accepted after a CAL:CONF:RES is a
CAL:VAL:RES command.

3006 ‘Illegal command. Send CAL:VAL:VOLT.’ The only
command accepted after a CAL:CONF:VOLT is a
CAL:VAL:VOLT command.

3007 ‘Invalid signal conditioning module.’ The command sent
to an SCP was illegal for its type.

3008 ‘Too few channels in scan list.’ A Scan List must contain
at least two channels.

3012 ‘Trigger too fast.’ Scan list not completed before another
trigger event occurs.

3015 ‘Channel modifier not permitted here.’

3019 ‘TRIG:TIM interval too small for SAMP:TIM interval
and scan list size.’ TRIG:TIM interval must allow for
completion of entire scan list at currently set SAMP:TIM
interval. See TRIG:TIM in Chapter 6, the Command
Reference.

3020 ‘Input over-voltage.’ Calibration relays opened (if
JM2202 not cut) to protect module inputs and
Questionable Data Status bit 11 set. Execute *RST to
close relays and/or reset status bit.

3021 ‘FIFO overflow.’ Indicates that the FIFO buffer has filled
and that one or more readings have been lost. Usually
caused by algorithm values stored in FIFO faster than
FIFO was read.

3026 ‘Calibration failed.’

3027 ‘Unable to map A24 VXI memory.’

3028 ‘Incorrect range value.’ Range value sent is not supported
by instrument.

3030 ‘Command not yet implemented!!’

3032 ‘0x1: DSP-Unrecognized command code.’

3033 ‘0x2: DSP-Parameter out of range.’

326 Error Messages Appendix B

3034 ‘0x4: DSP-Flash rom erase failure.’

3035 ‘0x8: DSP-Programming voltage not present.’

3036 ‘0x10: DSP-Invalid SCP gain value.’ Check that SCP is
seated or replace SCP. Channel numbers are in FIFO.

3037 ‘0x20: DSP-Invalid *CAL? constant or checksum.
*CAL? required.’

3038 ‘0x40: DSP-Couldn’t cal some channels.’ Check that
SCP is seated or replace SCP. Channel numbers are in
FIFO.

3039 ‘0x80: DSP-Re-Zero of ADC failed.’

3040 ‘0x100: DSP-Invalid Tare CAL constant or checksum.’
Perform CAL:TARE - CAL:TARE? procedure.

3041 ‘0x200: DSP-Invalid Factory CAL constant or
checksum.’ Perform A/D Cal procedure.

3042 ‘0x400: DSP-DAC adjustment went to limit.’ Execute
*TST?

3043 ‘0x800: DSP Status—Do *CAL?’

3044 ‘0x1000: DSP-over-voltage on input.’

3045 ‘0x2000: DSP-reserved error condition.’

3046 ‘0x4000: DSP-ADC hardware failure.’

3047 ‘0x8000: DSP-reserved error condition.’

3048 ‘Calibration or Test in Process.’

3049 ‘Calibration not in Process.’

3050 ‘ZERO must be sent before FSCale.’ Perform A/D Cal
sequence as shown in Command Reference under
CAL:CONF:VOLT

3051 ‘Memory size must be multiple of 4.’ From
MEM:VME:SIZE. Each VT1415A reading requires 4
bytes.

3052 ‘Self test failed. Test info in FIFO.’ Use
SENS:DATA:FIFO:ALL? to retrieve data from FIFO.

NOTE: *TST? always sets the FIFO data FORMat to
ASCII,7. Read FIFO data into string variables.

Appendix B Error Messages 327

Meaning of *TST? FIFO data by Value

FIIFO Value Definition

1 - 99 ID number of failed test (see following table for
possible corrective actions).

100 - 163 channel number(s) associated with test (ch 0-63).

164 special “channel” used for A/D tests only.

200 A/D range 0.0625 V associated with failed test.

201 A/D range 0.25 V associated with failed test.

202 A/D range 1 V associated with failed test.

203 A/D range 4 V associated with failed test.

204 A/D range 16 V associated with failed test.

Possible Corrective Action by Failed Test ID Number

Test ID Corrective Actions

1 - 19, 21 - 29 (VXI Technology Service)*

20, 30 -37 Remove all SCPs and see if *TST? passes. If so,
replace SCPs one at a time until the one causing
the problem is found.

38 - 71 (VXI Technology Service)*

72,74 - 76, 80 - 93,
301 - 354

re-seat the SCP that the channel number(s) points
to or move the SCP and see if the failure(s)
follow the SCP. If the problems move with the
SCP, replace the SCP.

73, 77 - 79, 94 - 99 (VXI Technology Service)*

*Must send module to a VXI Technology Service Center
for repair. Record information found in FIFO to assist the
VXI Technology Service Center in repairing the problem.

Refer to the Command Reference under *TST? for a list
of module functions tested.

NOTE During the first 5 minutes after power is applied, *TST? may fail. Allow
the module to warm-up before executing *TST?

3053 ‘Corrupt on board Flash memory.’

3056 ‘Custom EU not loaded.’ May have erased custom
EU conversion table with *RST. May have linked
channel with standard EU after loading custom EU, this
erases the custom EU for this channel. Reload custom EU
table using DIAG:CUST:LIN or DIAG:CUST:PIEC.

328 Error Messages Appendix B

3057 ‘Invalid ARM or TRIG source when S/H SCP’s enabled.’
Don’t set TRIG:SOUR or ARM:SOUR to SCP with
VT1510A or VT1511A installed.

3058 ‘Hardware does not have D32, S/H or new trigger
capabilities.’ Module’s serial number is earlier than
3313A00530.

3067 ‘Multiple attempts to erase Flash Memory failed.’

3068 ‘Multiple attempts to program Flash Memory failed.’

3069 ‘Programming voltage jumper not set properly.’ See
Disabling Flash Memory Access in Chapter 1 (JM2201)

3070 ‘Identification of Flash ROM incorrect.’

3071 ‘Checksum error on Flash Memory.’

3074 ‘WARNING! Old Opt 16 or Opt 17 card can damage
SCP modules.’ must use VT1506A/07A.

3075 ‘Too many entries in CVT list.’

3076 ‘Invalid entry in CVT list.’ Can only be 10 to 511.

3077 ‘Too many updates in queue. Must send UPDATE
command’ To allow more updates per ALG:UPD,
increase ALG:UPD:WINDOW.

3078 ‘Invalid Algorithm name.’ Can only be ‘ALG1’ through
‘ALG32’ or ‘GLOBALS’ or ‘MAIN.’

3079 ‘Algorithm is undefined.’ In ALG:SCAL, ALG:SCAL?,
ALG:ARR or ALG:ARR?

3080 ‘Algorithm already defined.’ Trying to repeat ALG:DEF
with same <alg_name> (and is not enabled to swap) or
trying to define ‘GLOBALS’ again since last *RST.

3081 ‘Variable is undefined.’ Algorithm exists but has no local
variable by that name.

3082 ‘Invalid Variable name.’ Must be valid ‘C’ identifier, see
Chapter 5.

3083 ‘Global symbol (variable or custom function) already
defined.’ Trying to define a global variable with same
name as a user defined function or vice versa. User
functions are also global.

3084 ‘Algorithmic error queue full.’ ALG:DEF has generated
too many errors from the algorithm source code.

Appendix B Error Messages 329

3084 “Error 1: Number too big for a 32 bit float”
“Error 2: Number too big for a 32 bit integer”
“Error 3: ‘8’ or ‘9’ not allowed in an octal number”
“Error 4: Syntax error”
“Error 5: Expecting ‘(‘”
“Error 6: Expecting ‘)’”
“Error 7: Expecting an expression”
“Error 8: Out of driver memory”
“Error 9: Expecting a bit number (Bn or Bnn)”
“Error 10: Expecting ‘]’”
“Error 11: Expecting an identifier”
“Error 12: Arrays can’t be initialized”
“Error 13: Expecting ‘static’”
“Error 14: Expecting ‘float’”
“Error 15: Expecting ‘;’”
“Error 16: Expecting ‘,’”
“Error 17: Expecting ‘=’”
“Error 18: Expecting ‘{‘”
“Error 19: Expecting ‘}’”
“Error 20: Expecting a statement”
“Error 21: Expecting ‘if’”
“Error 22: Can’t write to input channels”
“Error 23: Expecting a constant expression”
“Error 24: Expecting an integer constant expression”
“Error 25: Reference to an undefined variable”
“Error 26: Array name used in a scalar context”
“Error 27: Scalar name used in an array context”
“Error 28: Variable name used in a custom function

context”
“Error 29: Reference to an undefined custom function”
“Error 30: Can’t have executable code in GLOBALS

definition”
“Error 31: CVT address range is 10 - 511"
”Error 32: Numbered algorithms can only be called
from

MAIN"
“Error 33: Reference to an undefined algorithm”
“Error 34: Attempt to redefine an existing symbol

(var or fn)”
“Error 35: Array size is 1 - 1024"
”Error 36: Expecting a default PID parameter"
“Error 37: Too many FIFO or CVT writes per scan

trigger”
“Error 38: Statement is too complex”
“Error 39: Unterminated comment”

3085 ‘Algorithm too big.’ Algorithm exceeded 46k words (23k
if enabled to swap) or exceeded size specified in
<swap_size>.

330 Error Messages Appendix B

3086 ‘Not enough memory to compile Algorithm.’ The
algorithm’s constructs are using too much translator
memory. Need more memory in the Agilent/HP E1406.
Try breaking the algorithm into smaller algorithms.

3088 ‘Too many functions.’ Limit is 32 user defined functions

3089 ‘Bad Algorithm array index.’ Must be from 0 to
(declared size)-1.

3090 ‘Algorithm Compiler Internal Error.’ Call
VXI Technology with details of operation.

3091 ‘Illegal while not initiated.’ Send INIT before this
command.

3092 ‘No updates in queue.’

3093 ‘Illegal Variable Type.’ Sent ALG:SCAL with identifier
of array, ALG:ARR with scalar identifier,
ALG:UPD:CHAN with identifier that is not a channel,
etc.

3094 ‘Invalid Array Size.’ Must be 1 to 1024.

3095 ‘Invalid Algorithm Number.’ Must be ‘ALG1’ to
‘ALG32.’

3096 ‘Algorithm Block must contain termination.’ Must
append a null byte to end of algorithm string within the
Block Data.

3097 ‘Unknown SCP. Not Tested.’ May be received if using a
breadboard SCP.

3099 ‘Invalid SCP for this product.’

3100 ‘Analog Scan time to big. Too much settling time.’
Count of channels referenced by algorithms combined
with use of SENS:CHAN:SETTLING has attempted to
build an analog Scan List greater than 64 channels.

3101 ‘Can’t define new algorithm while running.’ Execute
ABORT, then define algorithm.

3102 ‘Need ALG:UPD before redefining this algorithm again.’
Already have an algorithm swap pending for this
algorithm.

3103 ‘Algorithm swapping already enabled; Can’t change
size.’ Only send <swap_size> parameter on initial
definition.

Appendix B Error Messages 331

3104 ‘GLOBALS can’t be enabled for swapping.’ Don’t send
<swap_size> parameter for ALG:DEF ‘GLOBALS.’

332 Error Messages Appendix B

Appendix C

Glossary

The following terms have special meaning when related to the VT1415A.

Algorithm In general, an algorithm is a tightly defined procedure
that performs a task. This manual, uses the term to
indicate a program executed within the VT1415A that
implements a data acquisition and control algorithm.

Algorithm
Language

The algorithm programming language specific to the
VT1415A. This programming language is a subset of the
ANSI ‘C’ language.

Application
Program

The program that runs in the VXIbus controller, either
embedded within the VXIbus mainframe or external and
interfaced to the mainframe. The application program
typically sends SCPI commands to configure the
VT1415A, define its algorithms, then start the algorithms
running. Typically, once the VT1415A is running
algorithms, the application need only “oversee” the
control application by monitoring the algorithms’ status.
During algorithm writing, debugging and tuning, the
application program can retrieve comprehensive data
from running algorithms.

Buffer In this manual, a buffer is an area in RAM memory that is
allocated to temporarily hold:

Data input values that an algorithm will later access.
This is the Input Channel Buffer.

Data output values from an algorithm until these
values are sent to hardware output channels. This is
the Output Channel Buffer.

Data output values from an algorithm until these
values are read by the application program. This is
the First-In-First-Out or FIFO buffer.

A second copy of an array variable containing
updated values until it is “activated” by an update.
This is “double buffering.”

A second version of a running algorithm until it is
“activated” by an update. This is only for algorithms
that are enabled for swapping. This is also “double
buffering.”

Appendix C Glossary 333

Control
Processor

The Digital Signal Processor (DSP) chip that performs all
of the VT1415A’s internal hardware control functions as
well as performing the EU Conversion process.

DSP Same as Control Processor

EU Engineering Units

EU Conversion Engineering Unit Conversion: Converting binary A/D
readings (in units of A/D counts) into engineering units
of voltage, resistance, temperature, strain. These are the
“built in” conversions (see SENS:FUNC: ...). The
VT1415A also provides access to custom EU conversions
(see SENS:FUNC:CUST in command reference and
“Creating and Loading Custom EU Tables” in
Chapter 3).

FIFO The First-In-First-OUT buffer that provides output
buffering for data sent from an algorithm to an
application program.

Flash or
Flash Memory

Non-volatile semiconductor memory used by the
VT1415A to store its control firmware and calibration
constants

Scan List A list of up to 64 channels that is built by the VT1415A.
Channels referenced in algorithms are placed in the Scan
List as the algorithm is defined. This list will be scanned
each time the module is triggered.

SCP Signal Conditioning Plug-On: Small circuit boards that
plug onto the VT1415A’s main circuit board. Available
analog input SCPs can provide noise canceling filters,
signal amplifiers, signal attenuators and strain bridge
completion. Analog output SCPs are available to provide
measurement excitation current, controlling voltage and
controlling current. Digital SCPs are available to both
read and write digital states, read frequency and counts
and output modulated pulse signals (FM and PWM).

Swapping This term applies to algorithms that are enabled to swap.
These algorithms can be exchanged with another of the
same name while the original is running. The “new”
algorithm becomes active after an update command is
sent. This “new” algorithm may again be swapped with
another and so on. This capability allows changing
algorithm operation without stopping and leaving this
and perhaps other processes without control.

Terminal
Blocks

The screw-terminal blocks the system field wiring is
connected to. The terminal blocks are inside the Terminal
Module.

334 Glossary Appendix C

Terminal
Module

The plastic encased module which contains the terminal
blocks the field wiring is connected to. The Terminal
Module then is plugged into the VT1415A’s front panel.

Update This is an intended change to an algorithm, algorithm
variable or global variable that is initiated by one of the
commands ALG:SCALAR, ALG:ARRAY,
ALG:DEFINE, ALG:SCAN:RATIO or ALG:STATE.
This change or “update” is considered to be pending until
an update command is received. Several updates can be
sent to the Update Queue, waiting for an update
command to cause them to take effect synchronously.
The update commands are ALG:UPDATE and
ALG:UPD:CHANNEL.

Update Queue A list of scalar variable values and/or buffer pointer
values (for arrays and swapping algorithms) that is built
in response to updates (see Update). When an update
command is sent, scalar values and pointer values are
sent to their working locations.

User Function A function callable from the Algorithm Language in the
general form <function_name>(<expression>). These
user defined functions provide advanced mathematical
capability to the Algorithm Language

Appendix C Glossary 335

Notes

336 Glossary Appendix C

Appendix D

PID Algorithm Listings

The following source listings show the actual code for the VT1415A’s
default PID algorithms: PIDA, PIDB, and PIDC. PIDC is an advanced
algorithm that is not "built into" the VT1415A, like PIDA and PIDB, but is
included here so that it can be downloaded using the ALG:DEF command.

Contents

· PIDA Listing . page 337

· PIDB Listing . page 339

· PIDC Listing . page 344

PIDA
/***/
/* I/O Channels */
/* Must be defined by the user */
/* */
/* inchan - Input channel name */
/* outchan - Output channel name */
/* */
/***/
/* */
/***/
/* PID algorithm for E1415A controller module. This algorithm is called */
/* once per scan trigger by main(). It performs Proportional, Integral */
/* and Derivative control. */
/* */
/* */
/* The output is derived from the following equations: */
/* */
/* PID_out = P_out + I_out + D_out */
/* P_out = Error * P_factor */
/* I_out = I_out + (Error * I_factor) */
/* D_out = ((Error - Error_old) * D_factor) */
/* Error = Setpoint - PV */
/* */
/* where: */
/* Setpoint is the desired value of the process variable (user supplied) */
/* PV is the process variable measured on the input channel */
/* PID_out is the algorithm result sent to the output channel */
/* P_factor, I_factor and D_factor are the PID constants */
/* (user supplied) */
/* */
/* */
/* At startup, the output will abruptly change to P_factor * Error. */
/* */
/* */
/***/
/* */
/* User determined control parameters */

Appendix D PID Algorithm Listings 337

 static float Setpoint = 0; /* The setpoint */
 static float P_factor = 1; /* Proportional control constant */
 static float I_factor = 0; /* Integral control constant */
 static float D_factor = 0; /* Derivative control constant */
/* */
/* Other Variables */
 static float I_out; /* Integral term */
 static float Error; /* Error term */
 static float Error_old; /* Last Error - for derivative */
/* */
/*PID algorithm code: */
/* Begin PID calculations */
/* First, find the Process Variable “error” */
/* This calculation has gain of minus one (-1) */
 Error = Setpoint - inchan;
/* On the first trigger after INIT, initialize the I and D terms */
 if (First_loop)
 {
/* Zero the I term and start integrating */
 I_out = Error * I_factor;
/* Zero the derivative term */
 Error_old = Error;
 }
/* On subsequent triggers, continue integrating */
 else /* not First trigger */
 {

I_out = Error * I_factor + I_out;
 }
/* Sum PID terms */
 outchan = Error * P_factor + I_out + D_factor * (Error - Error_old);
/* Save values for next pass */
 Error_old = Error;

338 PID Algorithm Listings Appendix D

PIDB
/***/
/* PID_B */
/***/
/* I/O Channels */
/* Must be defined by the user */
/* */
/* inchan - Input channel name */
/* outchan - Output channel name */
/* alarmchan - Alarm channel name */
/* */
/***/
/* */
/***/
/* PID algorithm for E1415A controller module. This algorithm is called */
/* once per scan trigger by main(). It performs Proportional, Integral */
/* and Derivative control. */
/* */
/* */
/* The output is derived from the following equations: */
/* */
/* PID_out = P_out + I_out + D_out + SD_out */
/* P_out = Error * P_factor */
/* I_out = I_out + (Error * I_factor) */
/* D_out = ((PV_old - PV) * D_factor) */
/* SD_out = (Setpoint - Setpoint_old) * SD_factor */
/* Error = Setpoint - PV */
/* */
/* where: */
/* Setpoint is the desired value of the process variable (user supplied) */
/* PV is the process variable measured on the input channel */
/* PID_out is the algorithm result sent to the output channel */
/* P_factor, I_factor, D_factor and SD_factor are the PID constants */
/* (user supplied) */
/* */
/* Alarms may be generated when either the Process Variable or the */
/* error exceeds user supplied limits. The alarm condition will cause */
/* an interrupt to the host computer, set the (user-specified) alarm */
/* channel output to one (1) and set a bit in the Status variable to */
/* one (1). The interrupt is edge-sensitive. (It will be asserted only */
/* on the transition into the alarm state.) The alarm channel digital */
/* output will persist for the duration of all alarm conditions. The */
/* Status word bits will also persist for the alarm duration. No user */
/* intervention is required to clear the alarm outputs. */
/* */
/* This version provides for limiting (or clipping) of the Integral, */
/* Derivative, Setpoint Derivative and output to user specified limits. */
/* The Status Variable indicates when terms are being clipped. */
/* */
/* Manual control is activated when the user sets the Man_state variable */
/* to a non-zero value. The output will be held at its last value. The */
/* user can change the output by changing the Man_out variable. User */
/* initiated changes in Man_out will cause the output to slew to the */
/* Man_out value at a rate of Man_inc per scan trigger. */
/* */
/* Manual control causes the Setpoint to continually change to match */
/* the Process Variable and the Integral term to be constantly updated */
/* to the output value such that a return to automatic control will */
/* be bumpless and will use the current Process Variable value as the */
/* new setpoint. */
/* The Status variable indicates when the Manual control mode is active. */

Appendix D PID Algorithm Listings 339

/* */
/* At startup in the Manual control mode, the output will slew to Man_out */
/* at a rate of Man_inc per scan trigger. */
/* */
/* At startup, in the Automatic control mode, the output will abruptly */
/* change to P_factor * Error. */
/* */
/* For process monitoring, data may be sent to the FIFO and current */
/* value table (CVT). There are two levels of data logging, controlled */
/* by the History_mode variable. The location in the CVT is based */
/* on ‘n’, where n is the algorithm number (as returned by ALG_NUM, for */
/* example). The first value is placed in the (10 * n)th 32-bit word of */
/* the CVT. The other values are written in subsequent locations. */
/* */
/* History_mode = 0: Summary to CVT only. In this mode, four values */
/* are output to the CVT. */
/* */
/* Location Value */
/* 0 Input */
/* 1 Error */
/* 2 Output */
/* 3 Status */
/* */
/* History_mode = 1: Summary to CVT and FIFO. In this mode, the four */
/* summary values are written to both the CVT and FIFO. A header */
/* tag (256 * n + 4) is sent to the FIFO first, where n is the Algorithm */
/* number (1 - 32). */
/* */
/***/
/* */
/* User determined control parameters */
 static float Setpoint = 0; /* The setpoint */
 static float P_factor = 1; /* Proportional control constant */
 static float I_factor = 0; /* Integral control constant */
 static float D_factor = 0; /* Derivative control constant */
 static float Error_max = 9.9e+37; /* Error alarm limits */
 static float Error_min = -9.9e+37;
 static float PV_max = 9.9e+37; /* Process Variable alarm limits */
 static float PV_min = -9.9e+37;
 static float Out_max = 9.9e+37; /* Output clip limits */
 static float Out_min = -9.9e+37;
 static float D_max = 9.9e+37; /* Derivative clip limits */
 static float D_min = 9.9e+37;
 static float I_max = 9.9e+37; /* Integral clip limits */
 static float I_min = -9.9e+37;
 static float Man_state = 0; /* Activates manual control */
 static float Man_out = 0; /* Target Manual output value */
 static float Man_inc = 9.9e+37; /* Manual outout change increment */
 static float SD_factor = 0; /* Setpoint Derivative constant */
 static float SD_max = 9.9e+37; /* Setpoint Derivative clip limits */
 static float SD_min = 9.9e+37;
 static float History_mode = 0; /* Activates fifo data logging */
/* */
/* Other Variables */
 static float I_out; /* Integral term */
 static float D_out; /* Derivative term */
 static float Error; /* Error term */
 static float PV_old; /* Last process variable */
 static float Setpoint_old; /* Last setpoint - for derivative */
 static float SD_out; /* Setpoint derivative term */
 static float Status = 0; /* Algorithm status word */

/* */

340 PID Algorithm Listings Appendix D

/* B0 - PID_out at clip limit */
/* B1 - I_out at clip limit */
/* B2 - D_out at clip limit */
/* B3 - SD_out at clip limit */
/* B4 - in Manual control mode */
/* B5 - Error out of limits */
/* B6 - PV out of limits */
/* others - unused */
/* */

/* */
/*PID algorithm code: */
/* Test for Process Variable out of limits */
 if ((inchan > PV_max) || (PV_min > inchan)) /* PV alarm test */
 {

if (!Status.B6)
{
 Status.B6 = 1;
 alarmchan = 1;
 interrupt();
}

 }
 else
 {

Status.B6 = 0;
 }
/* Do this when in the Manual control mode */
 if (Man_state)
 {
/* Slew output towards Man_out */
 if (Man_out > outchan + abs(Man_inc))
 {

outchan = outchan + abs(Man_inc);
 }
 else if (outchan > Man_out + abs(Man_inc))
 {

outchan = outchan - abs(Man_inc);
 }
 else
 {

outchan = Man_out;
 }
/* Set manual mode bit in status word */
 Status.B4 = 1;
/* No error alarms while in Manual mode */
 Status.B5 = 0;
/* In case we exit manual mode on the next trigger */
/* Set up for bumpless transfer */
 I_out = outchan;
 Setpoint = inchan;
 PV_old = inchan;
 Setpoint_old = inchan;
 }
/* Do PID calculations when not in Manual mode */
 else /* if (Man_state) */
 {
 Status.B4 = 0;
/* First, find the Process Variable “error” */
/* This calculation has gain of minus one (-1) */
 Error = Setpoint - inchan;
/* Test for error out of limits */
 if ((Error > Error_max) || (Error_min > Error))
 {

Appendix D PID Algorithm Listings 341

 if (!Status.B5)
 {
 Status.B5 = 1;
 alarmchan = 1;
 interrupt();
 }
 }
 else
 {

Status.B5 = 0;
 }
/* On the first trigger after INIT, initialize the I and D terms */
 if (First_loop)
 {
/* Zero the I term and start integrating */
 I_out = Error * I_factor;
/* Zero the derivative terms */
 PV_old = inchan;

Setpoint_old = Setpoint;
 }
/* On subsequent triggers, continue integrating */
 else /* not First trigger */
 {

I_out = Error * I_factor + I_out;
 }
/* Clip the Integral term to specified limits */
 if (I_out > I_max)
 {

I_out = I_max;
Status.B1=1;

 }
 else if (I_min > I_out)
 {

I_out = I_min;
Status.B1=1;

 }
 else
 {

Status.B1 = 0;
 }
/* Calculate the Setpoint Derivative term */
 SD_out = SD_factor * (Setpoint - Setpoint_old);
/* Clip to specified limits */
 if (SD_out > SD_max) /* Clip Setpoint derivative */
 {
 SD_out = SD_max;
 Status.B3=1;
 }
 else if (SD_min > SD_out)
 {
 SD_out = SD_min;
 Status.B3=1;
 }
 else
 {

Status.B3 = 0;
 }
/* Calculate the Error Derivative term */
 D_out = D_factor *(PV_old - inchan);
/* Clip to specified limits */
 if (D_out > D_max) /* Clip derivative */
 {

342 PID Algorithm Listings Appendix D

D_out = D_max;
Status.B2=1;

 }
 else if (D_min > D_out)
 {

D_out = D_min;
Status.B2=1;

 }
 else
 {

Status.B2 = 0;
 }
/* Sum PID&SD terms */
 outchan = Error * P_factor + I_out + D_out + SD_out;
/* Save values for next pass */
 PV_old = inchan;

Setpoint_old = Setpoint;
/* In case we switch to manual on the next pass */
/* prepare to hold output at latest value */
 Man_out = outchan;
 } /* if (Man_state) */
/* Clip output to specified limits */
 if (outchan > Out_max)
 {

outchan = Out_max;
Status.B0=1;

 }
 else if (Out_min > outchan)
 {

outchan = Out_min;
Status.B0=1;

 }
 else
 {

Status.B0 = 0;
 }
/* Clear alarm output if no alarms */
 if (!(Status.B6 || Status.B5)) alarmchan = 0;
/* Log appropriate data */
 if (History_mode)
 {
/* Output summary to FIFO & CVT */

writefifo((ALG_NUM*256)+4);
writeboth(inchan, (ALG_NUM*10)+0);
writeboth(Error, (ALG_NUM*10)+1);
writeboth(outchan, (ALG_NUM*10)+2);
writeboth(Status, (ALG_NUM*10)+3);

 }
 else
 {
/* Output summary to CVT only */

writecvt(inchan, (ALG_NUM*10)+0);
writecvt(Error, (ALG_NUM*10)+1);
writecvt(outchan, (ALG_NUM*10)+2);
writecvt(Status, (ALG_NUM*10)+3);

 }

Appendix D PID Algorithm Listings 343

PIDC
/***/
/* PID_C */
/***/
/* I/O Channels */
/* Must be defined by the user */
/* */
/* inchan - Input channel name */
/* outchan - Output channel name */
/* alarmchan - Alarm channel name */
/* */
/***/
/* */
/***/
/* PID algorithm for E1415A controller module. This algorithm is called */
/* once per scan trigger by main(). It performs Proportional, Integral */
/* and Derivative control. */
/* */
/* */
/* The output is derived from the following equations: */
/* */
/* PID_out = P_out + I_out + D_out + SD_out */
/* P_out = Error * P_factor */
/* I_out = I_out + (Error * I_factor) */
/* D_out = ((PV_old - PV) * D_factor) */
/* SD_out = (Setpoint - Setpoint_old) * SD_factor */
/* Error = Setpoint - PV */
/* */
/* where: */
/* Setpoint is the desired value of the process variable (user supplied) */
/* PV is the process variable measured on the input channel */
/* PID_out is the algorithm result sent to the output channel */
/* P_factor, I_factor, D_factor and SD_factor are the PID constants */
/* (user supplied) */
/* */
/* Alarms may be generated when either the Process Variable or the */
/* error exceeds user supplied limits. The alarm condition will cause */
/* an interrupt to the host computer, set the (user-specified) alarm */
/* channel output to one (1) and set a bit in the Status variable to */
/* one (1). The interrupt is edge-sensitive. (It will be asserted only */
/* on the transition into the alarm state.) The alarm channel digital */
/* output will persist for the duration of all alarm conditions. The */
/* Status word bits will also persist for the alarm duration. No user */
/* intervention is required to clear the alarm outputs. */
/* */
/* This version provides for limiting (or clipping) of the Integral, */
/* Derivative, Setpoint Derivative and output to user specified limits. */
/* The Status Variable indicates when terms are being clipped. */
/* */
/* Manual control is activated when the user sets the Man_state variable */
/* to a non-zero value. The output will be held at its last value. The */
/* user can change the output by changing the Man_out variable. User */
/* initiated changes in Man_out will cause the output to slew to the */
/* Man_out value at a rate of Man_inc per scan trigger. */
/* */
/* Manual control causes the Setpoint to continually change to match */
/* the Process Variable and the Integral term to be constantly updated */
/* to the output value such that a return to automatic control will */
/* be bumpless and will use the current Process Variable value as the */
/* new setpoint. */
/* The Status variable indicates when the Manual control mode is active. */

344 PID Algorithm Listings Appendix D

/* */
/* At startup in the Manual control mode, the output will be held at */
/* its current value. */
/* */
/* At startup, in the Automatic control mode, the output will slew */
/* from its initial value towards P_factor * Error at a rate determined */
/* by the Integral control constant (I_out is initialized to cancel P_out). */
/* */
/* For process monitoring, data may be sent to the FIFO and current */
/* value table (CVT). There are three levels of data logging, controlled */
/* by the History_mode variable. The location in the CVT is based */
/* on ‘n’, where n is the algorithm number (as returned by ALG_NUM, for */
/* example). The first value is placed in the (10 * n)th 32-bit word of */
/* the CVT. The other values are written in subsequent locations. */
/* */
/* History_mode = 0: Summary to CVT only. In this mode, four values */
/* are output to the CVT. */
/* */
/* Location Value */
/* 0 Input */
/* 1 Error */
/* 2 Output */
/* 3 Status */
/* */
/* History_mode = 1: Summary to CVT and FIFO. In this mode, the four */
/* summary values are written to both the CVT and FIFO. A header */
/* tag (256 * n + 4) is sent to the FIFO first. */
/* */
/* History_mode = 2: All to FIFO and CVT. In this mode, nine values */
/* are output to both the CVT and FIFO. A header tag (256 * n + 9) */
/* is sent to the FIFO first. */
/* */
/* Location Value */
/* 0 Input
*/
/* 1 Error */
/* 2 Output */
/* 3 Status */
/* 4 Setpoint */
/* 5 Proportional term */
/* 6 Integral term */
/* 7 Derivative term */
/* 8 Setpoint Derivative term */
/* */
/***/
/* */
/* User determined control parameters */
 static float Setpoint = 0; /* The setpoint */
 static float P_factor = 1; /* Proportional control constant */
 static float I_factor = 0; /* Integral control constant */
 static float D_factor = 0; /* Derivative control constant */
 static float Error_max = 9.9e+37; /* Error alarm limits */
 static float Error_min = -9.9e+37;
 static float PV_max = 9.9e+37; /* Process Variable alarm limits */
 static float PV_min = -9.9e+37;
 static float Out_max = 9.9e+37; /* Output clip limits */
 static float Out_min = -9.9e+37;
 static float D_max = 9.9e+37; /* Derivative clip limits */
 static float D_min = 9.9e+37;
 static float I_max = 9.9e+37; /* Integral clip limits */
 static float I_min = -9.9e+37;
 static float Man_state = 0; /* Activates manual control */
 static float Man_out = 0; /* Target Manual output value */

Appendix D PID Algorithm Listings 345

 static float Man_inc = 0; /* Manual outout change increment */
 static float SD_factor = 0; /* Setpoint Derivative constant */
 static float SD_max = 9.9e+37; /* Setpoint Derivative clip limits */
 static float SD_min = 9.9e+37;
 static float History_mode = 0; /* Activates fifo data logging */
/* */
/* Other Variables */
 static float I_out; /* Integral term */
 static float P_out; /* Proportional term */
 static float D_out; /* Derivative term */
 static float Error; /* Error term */
 static float PV_old; /* Last process variable */
 static float Setpoint_old; /* Last setpoint - for derivative */
 static float SD_out; /* Setpoint derivative term */
 static float Status = 0; /* Algorithm status word */

/* */
/* B0 - PID_out at clip limit */
/* B1 - I_out at clip limit */
/* B2 - D_out at clip limit */
/* B3 - SD_out at clip limit */
/* B4 - in Manual control mode */
/* B5 - Error out of limits */
/* B6 - PV out of limits */
/* others - unused */
/* */

/* */
/*PID algorithm code: */
/* Test for Process Variable out of limits */
 if ((inchan > PV_max) || (PV_min > inchan)) /* PV alarm test */
 {

if (!Status.B6)
{
 Status.B6 = 1;
 alarmchan = 1;
 interrupt();
}

 }
 else
 {

Status.B6 = 0;
 }
/* Do this when in the Manual control mode */
 if (Man_state)
 {
/* On the first trigger after INIT only */
 if (First_loop)
 {
 Man_out= outchan; /* Maintain output at manual smooth start */
 }
/* On subsequent triggers, slew output towards Man_out */
 else if (Man_out > outchan + abs(Man_inc))
 {

outchan = outchan + abs(Man_inc);
 }
 else if (outchan > Man_out + abs(Man_inc))
 {

outchan = outchan - abs(Man_inc);
 }
 else
 {

outchan = Man_out;
 }

346 PID Algorithm Listings Appendix D

/* Set manual mode bit in status word */
 Status.B4 = 1;
/* No error alarms while in Manual mode */
 Status.B5 = 0;
/* In case we exit manual mode on the next trigger */
/* Set up for bumpless transfer */
 I_out = outchan;
 Setpoint = inchan;
 PV_old = inchan;
 Setpoint_old = inchan;
 }
/* Do PID calculations when not in Manual mode */
 else /* if (Man_state) */
 {
 Status.B4 = 0;
/* First, find the Process Variable “error” */
/* This calculation has gain of minus one (-1) */
 Error = Setpoint - inchan;
/* Test for error out of limits */
 if ((Error > Error_max) || (Error_min > Error))
 {
 if (!Status.B5)
 {
 Status.B5 = 1;
 alarmchan = 1;
 interrupt();
 }
 }
 else
 {

Status.B5 = 0;
 }
/* On the first trigger after INIT, initialize the I and D terms */
 if (First_loop)
 {
/* For no abrupt output change at startup make the I term cancel the P term */

I_out = outchan + Error * (I_factor - P_factor);
/* Zero the derivative terms */
 PV_old = inchan;

Setpoint_old = Setpoint;
 }
/* On subsequent triggers, continue integrating */
 else /* not First trigger */
 {

I_out = Error * I_factor + I_out;
 }
/* Clip the Integral term to specified limits */
 if (I_out > I_max)
 {

I_out = I_max;
Status.B1=1;

 }
 else if (I_min > I_out)
 {

I_out = I_min;
Status.B1=1;

 }
 else
 {

Status.B1 = 0;
 }
/* Calculate the Setpoint Derivative term */

Appendix D PID Algorithm Listings 347

 SD_out = SD_factor * (Setpoint - Setpoint_old);
/* Clip to specified limits */
 if (SD_out > SD_max) /* Clip Setpoint derivative */
 {
 SD_out = SD_max;
 Status.B3=1;
 }
 else if (SD_min > SD_out)
 {
 SD_out = SD_min;
 Status.B3=1;
 }
 else
 {

Status.B3 = 0;
 }
/* Calculate the Error Derivative term */
 D_out = D_factor *(PV_old - inchan);
/* Clip to specified limits */
 if (D_out > D_max) /* Clip derivative */
 {

D_out = D_max;
Status.B2=1;

 }
 else if (D_min > D_out)
 {

D_out = D_min;
Status.B2=1;

 }
 else
 {

Status.B2 = 0;
 }
/* Calculate Proportional term */
 P_out = Error * P_factor;
/* Sum PID&SD terms */
 outchan = P_out + I_out + D_out + SD_out;
/* Save values for next pass */
 PV_old = inchan;

Setpoint_old = Setpoint;
/* In case we switch to manual on the next pass */
/* prepare to hold output at latest value */
 Man_out = outchan;
 } /* if (Man_state) */
/* Clip output to specified limits */
 if (outchan > Out_max)
 {

outchan = Out_max;
Status.B0=1;

 }
 else if (Out_min > outchan)
 {

outchan = Out_min;
Status.B0=1;

 }
 else
 {

Status.B0 = 0;
 }
/* Clear alarm output if no alarms */
 if (!(Status.B6 || Status.B5)) alarmchan = 0;
/* Log appropriate data */

348 PID Algorithm Listings Appendix D

 if (History_mode > 1)
 {
/* Output everything to FIFO & CVT */

writefifo((ALG_NUM*256)+9);
writeboth(inchan, (ALG_NUM*10)+0);
writeboth(Error, (ALG_NUM*10)+1);
writeboth(outchan, (ALG_NUM*10)+2);
writeboth(Status, (ALG_NUM*10)+3);
writeboth(Setpoint, (ALG_NUM*10)+4);
writeboth(P_out, (ALG_NUM*10)+5);
writeboth(I_out, (ALG_NUM*10)+6);
writeboth(D_out, (ALG_NUM*10)+7);
writeboth(SD_out, (ALG_NUM*10)+8);

 }
 else if (History_mode)
 {
/* Output summary to FIFO & CVT */

writefifo((ALG_NUM*256)+4);
writeboth(inchan, (ALG_NUM*10)+0);
writeboth(Error, (ALG_NUM*10)+1);
writeboth(outchan, (ALG_NUM*10)+2);
writeboth(Status, (ALG_NUM*10)+3);

 }
 else
 {
/* Output summary to CVT only */

writecvt(inchan, (ALG_NUM*10)+0);
writecvt(Error, (ALG_NUM*10)+1);
writecvt(outchan, (ALG_NUM*10)+2);
writecvt(Status, (ALG_NUM*10)+3);

 }

Appendix D PID Algorithm Listings 349

350 PID Algorithm Listings Appendix D

Appendix E

Wiring and Noise Reduction Methods

Separating Digital and Analog SCP Signals

Signals with very fast rise time can cause interference with nearby signal
paths. This is called cross-talk. Digital signals present this fast rise-time
situation. Digital I/O signal lines that are very close to analog input signal
lines can inject noise into them.

Cross-talk can be minimized by maximizing the distance between analog
input and digital I/O signal lines. Figure E-1 shows that by installing analog
input SCPs in positions 0 through 3 and digital I/O SCPs in positions 4
through 7, these types of signals are separated by the width of the VT1415A
module. The signals are further isolated because they remain separated on
the connector module as well. Note that in Figure E-1, even though only six
of the eight SCP positions are filled, the SCPs present are not installed
contiguously, but are arranged to provide this digital/analog separation.

If it is necessary to mix analog input and digital I/O SCPs on the same side,
the following suggestions will help provide quieter analog measurements.

· Use analog input SCPs that provide filtering on the mixed side.

· Route only high level analog signals to the mixed side.

Appendix E Wiring and Noise Reduction Methods 351

Figure E-1: Separating Analog and Digital Signals

SCP Pos 6 SCP Pos 5

SCP Pos 2SCP Pos 0 SCP Pos 1

SCP Pos 7

t
u

p
nI

g
ol

a
n

A
O/I l

ati
gi

D

SCP Pos 4

SCP Pos 3

Recommended Wiring and Noise Reduction Techniques

Unshielded signal wiring is very common in Data Acquisition applications.
While this worked well for low speed integrating A/D measurements and/or
for measuring high level signals, it does not work for high speed sampling
A/Ds, particularly when measuring low level signals like thermocouples or
strain gage bridge outputs. Unshielded wiring will pick up environmental
noise, causing measurement errors. Shielded, twisted pair signal wiring,
although it is expensive, is required for these measurements unless an even
more expensive amplifier-at-the-signal-source or individual A/D at the
source is used.

Generally, the shield should be connected to ground at the DUT and left
open at the VT1415A. Floating DUTs or transducers are an exception.
Connect the shield to VT1415A GND or GRD terminals for this case,
whichever gives the best performance. This will usually be the GND
terminal. A single point shield to ground connection is required to prevent
ground loops. This point should be as near to the noise source as possible
and this is usually at the DUT.

Wiring Checklist The following lists some recommended wiring techniques.

1. Use individually shielded, twisted-pair wiring for each channel.

2. Connect the shield of each wiring pair to the corresponding Guard
(G) terminal on the Terminal Module .

3. The Terminal Module is shipped with the Ground-Guard
(GND-GRD) shorting jumper installed for each channel. These may
be left installed or removed, dependent on the following conditions:

a.Grounded Transducer with shield connected to ground at
the transducer: Low frequency ground loops (dc and/or
50/60 Hz) can result if the shield is also grounded at the
Terminal Module end. To prevent this, remove the GND-GRD
jumper for that channel.

b.Floating Transducer with shield connected to the transducer
at the source: In this case, the best performance will most likely
be achieved by leaving the GND-GRD jumper in place.

4. In general, the GND-GRD jumper can be left in place unless it is
necessary to break low frequency (below 1 kHz) ground loops.

352 Wiring and Noise Reduction Methods Appendix E

VT1415A Guard
Connections

The VT1415A guard connection provides a 10 kW current limiting resistor
between the guard terminals (G) and VT1415A chassis ground for each 8
channel SCP bank. This is a safety device for the case where the Device
Under Test (DUT) isn’t actually floating, the shield is connected to the DUT

and also connected to the VT1415A guard terminal (G). The 10 kW resistor
limits the ground loop current, which has been known to burn out shields.

This also provides 20 kW isolation between shields between SCP banks
which helps isolate the noise source.

Common Mode
Voltage Limits

Be very careful not to exceed the maximum common mode voltage
referenced to the card chassis ground of ±16 volts (±60 volts with the
VT1513A Attenuator SCP). There is an exception to this when high
frequency (1 kHz - 20 kHz) common mode noise is present (see “VT1415A
Noise Rejection” below). Also, if the DUT is not grounded, then the shield
should be connected to the VT1415A chassis ground.

When to Make
Shield Connections

It is not always possible to state positively the best shield connection for all
cases. Shield performance depends on the noise coupling mechanism which
is very difficult to determine. The above recommendations are usually the
best wiring method, but if feasible, experiment with shield connections to
determine which provides the best performance for an installation and
environment.

NOTE For a thorough, rigorous discussion of measurement noise, shielding and
filtering, see “Noise Reduction Techniques in Electronic Systems” by
Henry W. Ott of Bell Laboratories, published by Wiley & Sons, ISBN
0-471-85068-3.

Noise Due to Inadequate Card Grounding

If either or both of the VT1415A and Agilent/HP E1482 (MXI Extender
Modules) are not securely screwed into the VXIbus Mainframe, noise can
be generated. Make sure that both screws (top and bottom) are screwed in
tight. If not, it is possible that CVT data could be more noisy than FIFO
data because the CVT is located in A24 space, the FIFO in A16 space; more
lines moving could cause noisier readings.

Appendix E Wiring and Noise Reduction Methods 353

VT1415A Noise Rejection

See Figure E-2 for the following discussion.

Normal Mode Noise
(Enm)

This noise is actually present at the signal source and is a differential noise
(Hi to Lo). It is what is filtered out by the buffered filters on the VT1502A,
VT1503A, VT1508A, and VT1509A SCPs.

Common Mode
Noise (Ecm)

This noise is common to both the Hi and Lo differential signal inputs. Low
frequency Ecm is very effectively rejected by a good differential
instrumentation amplifier and it can be averaged out when measured
through the Direct Input SCP (VT1501A). However, high frequency Ecm is
rectified and generates an offset with the amplifier and filter SCPs (such as
VT1502A, VT1503A, VT1508A, and VT1509A). This is since these SCPs
have buffer-amplifiers on-board and is a characteristic of amplifiers. The
best way to deal with this is to prevent the noise from getting into the
amplifier.

Keeping Common
Mode Noise out of

the Amplifier

Most common mode noise is about 60 Hz, so the differential amplifier
rejection is very good. The amplifier Common Mode Noise characteristics
are:

120 dB flat to 300 Hz, then 20 dB/octave rolloff

The VT1415A amplifiers are selected for low gain error, offset, temperature
drift and low power. These characteristics are generally incompatible with
good high frequency CMR performance. More expensive, high performance
amplifiers can solve this problem, but since they aren’t required for many
systems, VXI Technology elected to handle this with the High Frequency
Common Mode Filter option to the VT1586A Remote Rack Panel
(VT1586A-001, RF Filter) discussed below.

Shielded, twisted pair lead wire generally does a good job of keeping high
frequency common mode noise out of the amplifier, provided the shield is
connected to the VT1415A chassis ground through a very low impedance.
(Not via the guard terminal - The VT1415A guard terminal connection
shown in the VT1415A User’s manual does not consider the high frequency
Ecm problem and is there to limit the shield current and to allow the DUT to
float up to some dc common mode voltage subject to the maximum ±16 volt
input specification limit.

This conflicts with the often recommended good practice of grounding the
shield at the signal source and only at that point to eliminate line frequency
ground loops, which can be high enough to burn up a shield. It is
recommended that this practice be followed and if high frequency common
mode noise is seen (or suspected), tie the shield to the VT1415A ground
through a 0.1 µF capacitor. At high frequencies, this drives the shield
voltage to 0 volts at the VT1415A input. Due to inductive coupling to the
signal leads, the Ecm voltage on the signal leads is also driven to zero.

354 Wiring and Noise Reduction Methods Appendix E

Reducing Common
Mode Rejection

Using Tri-Filar
Transformers

One VT1413C customer determined that greater than 100 dB CMR to
10 MHz was required to get good thermocouple (TC) measurements in his
test environment. To accomplish this requires the use of tri-filar
transformers which are an option to the VT1586A Remote Rack Terminal
Panel. (This also provides superior isothermal reference block performance
for thermocouple measurements.) This works by virtue of the inductance in
the shield connected winding presenting a significant impedance to high
frequency common mode noise and forcing all the noise voltage to be
dropped across the winding. The common mode noise at the input amplifier
side of the winding is forced to 0 volts by virtue of the low impedance
connection to the VT1415A ground via the selectable short or parallel

combination of 1 kW and 0.1 µF. The short cannot be used in situations
where there is a very high common mode voltage, (dc and/or ac) that could
generate very large shield currents.

The tight coupling through the transformer windings into the signal Hi and
Low leads, forces the common mode noise at the input amplifier side of
those windings to 0 volts. This achieves the 110 dB to 10 MHz desired,
keeping the high frequency common mode noise out of the amplifier, thus
preventing the amplifier from rectifying this into an offset error.

This effectively does the same thing that shielded, twisted pair cable does,
only better. It is especially effective if the shield connection to the
VT1415A ground can’t be a very low impedance due to large dc and/or low
frequency common mode voltages.

Appendix E Wiring and Noise Reduction Methods 355

VT1586A
with Filter Option 001

110 dB CMR to 10 MHz

SCSI cable

Hi

Lo

VT1415A

VT1415A Ground

Normal Mode
(differential)

Noise Source
thermocouple

ENM

ECM

shielded twisted pair cable

removable
jumper

RC filter

RC filter

5 µF

jumper
configured

Note: RC filter is a series 5.11 kOhm resistor with
 a 220 pF capacitor to GND

Common Mode
Noise Source

DUT Ground

G

Figure E-2: HF Common Mode Filters

The tri-filar transformers don’t limit the differential (normal mode) signal
bandwidth. Thus, removing the requirement for “slowly varying signal
voltages.” The nature of the tri-filar transformer or, more accurately,
common-mode inductor, is that it provides a fairly high impedance to
common mode signals and a quite low impedance to differential mode
signals. The ratio of common-mode impedance to differential-mode
impedance for the transformer used is ~ 3500:1. Thus, there is NO
differential mode bandwidth penalty incurred by using the tri-filar
transformers.

356 Wiring and Noise Reduction Methods Appendix E

Appendix F

Generating User Defined Functions

Introduction

The VT1415A Algorithmic Closed Loop Control Card has a limited set of
mathematical operations such as add, subtract, multiply, and divide. Many
control applications require functions such a square root for calculating flow
rate or a trigonometric function to correctly transition motion of moving
object from a start to ending position. In order to represent a sine wave or
other transcendental functions, one could use a power series expansion to
approximate the function using a finite number of algebraic expressions.
Since the above mentioned operations can take from 1.5 µs to 4 µs for each
floating point calculation, a complex waveform such as sine(x) could take
more than 100 µs to get the desired result. A faster solution is desirable and
available.

The VT1415A provides a solution to approximating such complex
waveforms by using a piece-wise linearization of virtually any complex
waveform. The technique is simple. The DOS disc supplied with the
VT1415A contains both a ‘C’ and Rocky Mountain BASIC program which
calculates 128 Mx+B segments over a specified range of values for the
desired function. The user supplies the function; the program generates the
segments in a table. The resulting table can be downloaded into the
VT1415A’s RAM with the ALG:FUNC:DEF command where any desired
name of the function (i.e. sin(x), tan(x), etc.) can be selected. Up to 32
functions can be created for use in algorithms. At runtime where the
function is passed an ‘x’ value, the time to calculate the Mx+B function is
approximately 17 µs.

The VT1415A actually uses this technique to convert volts to temperature,
strain, etc. The accuracy of the approximation is really based upon how well
the range is selected over which the table is built. For thermocouple
temperature conversion, the VT1415A fixes the range to the lowest A/D
range (±64 millivolts) so that small, microvolt measurements yield the
proper resolution of the actual temperature for a non-linear transducer. In
addition, the VT1415A permits Custom Engineering Unit conversions to be
created for custom transducers so that when the voltage measurement is
actually made the EU conversion takes place (see SENS:FUNC:CUST).
Algorithms deal with the resulting floating point numbers generated during
the measurement phase and may require further complex mathematical
operations to achieve the desired result.

With some complex waveforms, it may be beneficial to break up the
waveform into several functions in order to get the desired accuracy. For
example, suppose it is necessary to generate a square root function for both
voltage and strain calculations. The voltages are only going to range from 0
to ±16 volts, worst case. The strain measurements return numbers in

Appendix F Generating User Defined Functions 357

microstrain will be in the 1000’s range. Trying to represent the square root
function over the entire range would severely impact the accuracy of the
approximation. Remember, the entire range is broken up into only 128
segments of Mx+B operations. If accuracy is desired, the range over which
calculations are made MUST be limited. Many transcendental functions are
simply used as a scaling multiplier. For example, a sine wave function is

typically created over a range of 360 degrees or 2*PI (or 2p) radians. After
which, the function repeats itself. It’s a simple matter to make sure the ‘x’
term is scaled to this range before calculating the result. This concept
should be used almost exclusively to obtain the best results.

Haversine Example

The following is an example of creating a haversine function (a sine wave
over the range of -p

2 to p 2). The resulting function represents a fairly
accurate approximation of this non-linear waveform when the range is
limited as indicated. Since the tables must be built upon binary boundaries

(i.e. 0.125, 0.25, 0.5, 1, 2, 4, etc.) and since p/2 is a number greater than 1
but less than 2, the next binary interval to include this range will be 2.
Another requirement for building the table is that the waveform range
MUST be centered around 0 (i.e. symmetrical about the X-axis). If the
desired function is not defined on one side or the other of the Y-axis, then
the table is right or left shifted by the offset from X = 0 and the table values
are calculated correctly, but the table is built as though it were centered
about the X-axis. For the most part, the last couple of sentences can be
ignored if they do not make sense. The only reason its brought up here is
that accuracy may suffer the farther away the waveform gets from the X = 0
point unless it is understood what resolution is available and how much
non-linearity is present in the waveform. This will be discussed later in the
“Limitations” section.

Figure F-1 shows the haversine function as stated above. This type of
waveform is typical of the kind of acceleration and deceleration one wants
when moving an object from one point to another. The desired beginning
point would be the location at -p

2 and the ending point would be at p 2. With
the desired range spread over ±p

2, the 128 segments are actually divided
over the range of ±2. Therefore, the 128 Mx+B line segments are divided
equally on both sides of X=0: 64 segments for 0..2 and 64 segments for
-2..0.

358 Generating User Defined Functions Appendix F

A typical use of this function would be to output an analog voltage or
current at each Scan Trigger of the VT1415A and over the range of the
haversine. For example, suppose a new position of an analog output is
needed to move from 1 mA to 3 mA over a period of 100 ms. If the
TRIG:TIMER setting or the EXTernal trigger was set to 2 ms, then force 50
intervals over the range of the haversine. This can be easily done by using a
scalar variable to count the number of times the algorithm has executed and

to scale the variable value to the -p/2 to p/2 range. 3 mA is multiplied times
the custom function result over each interval which will yield the shape of
the haversine (0.003*sin(x)+0.001). This is illustrated in the example
shown in Figure F-1. The program listings on the disc(and printed later in
this appendix) illustrate the actual program used to generate this haversine
function. Simply supply the algebraic expression in my_function(), the
desired range over which to evaluate the function (which determines the
table range) and the name of the function. The Build_table() routine (see
example file sine_fn.cs) creates the table for the function and the
ALG:FUNC:DEF writes that table into VT1415A memory. The table
MUST be built and downloaded BEFORE trying to use the function.

The following is a summary of what commands and parameters are used in
the program examples. Table F-1 shows some examples of the accuracy of
custom function with various input values compared to an evaluation of the
actual transcendental function found in ‘C’ or RMB. Please note that the
Mx+B segments are located on boundaries specified by 2/64 on each side of
X=0. This means that if the exact input value is selected that is used for the
beginning of each segment, the exact calculated value of the function at that
point will be provided. Any point between segments will be an
approximation dependent upon the linearity of that segment. Also note that
values of X = 2 and X = -2 will result in Y=infinity.

Appendix F Generating User Defined Functions 359

Figure F-1: A Haversine Function

‘C’ sin(-1.570798) -1.000000 ‘VT1415A’ sin(-1.570798) -0.999905

‘C’ sin(-1.256639) -0.951057 ‘VT1415A’ sin(-1.256639) -0.950965

‘C’ sin(-0.942479) -0.809018 ‘VT1415A’ sin(-0.942479) -0.808944

‘C’ sin(-0.628319) -0.587786 ‘VT1415A’ sin(-0.628319) -0.587740

‘C’ sin(-0.314160) -0.309017 ‘VT1415A’ sin(-0.314160) -0.308998

‘C’ sin(0.000000) 0.000000 ‘VT1415A’ sin(0.000000) 0.000000

‘C’ sin(0.314160) 0.309017 ‘VT1415A’ sin(0.314160) 0.308998

‘C’ sin(0.628319) 0.587786 ‘VT1415A’ sin(0.628319) 0.587740

‘C’ sin(0.942479) 0.809018 ‘VT1415A’ sin(0.942479) 0.808944

‘C’ sin(1.256639) 0.951057 ‘VT1415A’ sin(1.256639) 0.950965

‘C’ sin(1.570798) 1.000000 ‘VT1415A’ sin(1.570798) 0.999905

Table F-1. ‘C’ Sin(x) Vs. VT1415A Haversine Function for Selected Points.

Limitations

As stated earlier, there are limitations to using this custom function
technique. These limitations are directly proportional to the non-linearity of
the desired waveform. For example, suppose that the function X*X*X (or
X3) is to be represented over a range of ±1000. The resulting binary range
would be ±1024 and the segments would be partitioned at 1024/64 intervals.
This means that every 16 units would yield an Mx+B calculation over that
segment. As long as numbers are inputted that are VERY close to those
cardinal points, good results are yielded. Strictly speaking, perfect results
can be received only if calculations are performed at the cardinal points,
which may be reasonable for an application if the input values are limited to
exactly those 128 points.

The waveform may also be shifted anywhere along the X-axis and
Build_table() will provide the necessary offset calculations to generate the
proper table. Be aware, too, that shifting the table out to greater magnitudes
of X may also impact the precision of the results dependent upon the
linearity of the waveform. Suffice it to say that the best results will be
attained and it will be easiest to understand what is being done if the
waveforms stay near the X=0 point since most of the measurement results
will have 1e-6..16 values for volts.

One final note. Truncation errors may be seen in the fourth digit of the
results. This is because only 15 bits of the input value is sent to the function.
This occurs because the same technique used for Custom EU conversion is
used here and the method assumes input values are from the 16-bit A/D (15
bits = sign bit). This is evident in Table F-1, where the first and last entries
return ±0.9999 rather than ±1. For most applications, this accuracy should
be more than adequate.

360 Generating User Defined Functions Appendix F

Program Listings

‘C’ Version

/* $Header: $
 *
 * C-SCPI Example program for the E1415A Algorithmic Closed Loop Controller
 *
 * sine_fn.cs
 *
 * This is a general purpose example of using Custom Functions to generate
 * a haversine function.
 *
 * This is a template for building E1415A C programs that may use C-SCPI
 * or SICL to control instruments.
 */

/* Standard include files */
#include <stdlib.h> /* Most programs use one or more

 * functions from the C standard
 * library.
 */

#include <stdio.h> /* Most programs will also use standard
 * I/O functions.
 */

#include <stddef.h> /* This file is also often useful */
#include <math.h> /* Needed for any floating point fn’s */

/* Other system include files */
/* Whenever using system or library calls, check the call description to see
 * which include files should be included.
 */

/* Instrument control include files */
#include <cscpi.h> /* C-SCPI include file */

/* Declare any constants that will be useful to the program. In particular,
 * it is usually best to put instrument addresses in this area to make the code
 * more maintainable.
 */
#define E1415_ADDR “vxi,208" /* The SICL address of your E1415 */
INST_DECL(e1415, “E1415A”, REGISTER); /* E1415 */

/* Use something like this for GPIB and Agilent E1405/6 Command Module */
/* #define E1415_ADDR “gpib,22,26" /* The SICL address of your E1415 */
/*INST_DECL(e1415, “E1415A”, MESSAGE); /* E1415 */

/* Declare instruments that will be accessed with SICL. These declarations
 * can also be moved into local contexts.
 */
INST vxi; /* VXI interface session */

/* Trap instrument errors. If this function is used, it will be called every
 * time a C-SCPI instrument puts an error in the error queue. As written, the
 * function will figure out which instrument generated the error, retrieve the
 * error, print a message and exit. You may want to modify the way the error

Appendix F Generating User Defined Functions 361

 * is printed or comment out the exit if you want the program to continue.
 *
 * Note that this works only on REGISTER based instruments, because it was
 * a C-SCPI register-based feature, not a general programming improvement.
 * If you’re using MESSAGE instruments, you’ll still have to do SYST:ERR?:
 *
 * If your test program generates errors on purpose, you probably don’t want
 * this error function. If so, set the following “#if 1" to ”#if 0." This
 * function is most useful when you’re trying to get your program running.
 */
#if 1 /* Set to 0 to skip trapping errors */
/*ARGSUSED*/ /* Keeps lint happy */
void cscpi_error(INST id, int err)
{
 char errorbuf[255]; /* Holds instrument error message */
 char idbuf[255]; /* Holds instrument response to *IDN? */

 cscpi_exe(id, “*IDN?\n”, 6, idbuf, 255);
 cscpi_exe(id, “SYST:ERR?\n”, 10, errorbuf, 255);
 (void) fprintf(stderr, “Instrument error %s from %s\n”, errorbuf, idbuf);
}
#endif

/* The following routine allows you to type SCPI commands and see the results.
 * If you don’t call this from your program, set the following “#if 1" to
 * “#if 0."
 */
#if 1 /* Set to 0 to skip this routine */
void do_interactive(void)
{
 char command[5000];
 char result[5000];
 int32 error;
 char string[256];

 for(;;) {
(void) printf(“SCPI command: ”);
(void) fflush(stdout);
/* repeat until it actually gets something*/
while (!gets(command));
if (!*command) {
 break;
}
result[0] = 0;
cscpi_exe(e1415, command, strlen(command), result, sizeof(result));
INST_QUERY(e1415, “syst:err?”, “%d,%s”, &error, string);
while (error) {
 (void) printf(“syst:err %d,’%s’\n”, error, string);

 INST_QUERY(e1415,"syst:err?", “%d,%s”, &error, string);
}
if (result[0]) {
 (void) printf(“result: %s\n”, result);
}

 }
}
#endif

/* Print usage information */
void usage(char *prog_name)
{

362 Generating User Defined Functions Appendix F

 (void) fprintf(stderr, “usage: %s algorithm_file...\n”, prog_name);
}

/* Get an algorithm from a filename */
static char *get_algorithm(char *file_name)
{
 FILE *f; /* Algorithm file pointer */
 int32 a_size; /* Algorithm size */
 int c; /* Character read from input */
 char *algorithm; /* Points to algorithm string */

 f = fopen(file_name, “r”);
 if (! f) {
 (void) fprintf(stderr, “Error: can’t open algorithm file ‘%s’\n”,
 file_name);
 exit(1);
 }

 a_size = 0; /* Count length of algorithm */
 while (getc(f) != EOF) {
 a_size++;
 }

 rewind(f);
 algorithm = malloc(a_size + 1); /* Storage for algorithm */
 a_size = 0; /* Use as array index */
 while ((c = getc(f)) != EOF) { /* Read the algorithm */
 algorithm[a_size] = c;
 a_size++;
 }
 algorithm[a_size] = 0; /* Null terminate */
 (void) fclose(f);

 return algorithm; /* Return algorithm string */
}

/*F**
 * NAME: static float64 two_to_the_N()
 *
 * TASK: Calculates 2^n
 */

static float64 two_to_the_N(int32 n)
{
/* compute 2^n */
float64 r = 1;
int32 i;
 for (i = 0; i < n; i++)
 r *= 2;
 return (r);
}

/*F**
 * NAME: static int32 round32f()
 *
 * TASK: Rounds a 32-bit floating point number.
 */

static int32 round32f(float64 number)
 {
 /* add or subtract 0.5 to round based on sign of number */
 float64 half = (number > 0.0)? 0.5 : -0.5 ;

Appendix F Generating User Defined Functions 363

 return((int32)(number + half));
 }

/*F**
 * NAME: static float64 my_function()
 *
 * TASK: User-supplied function for calculating desired results of f(x).
 *
 * HAVERSINE
 */

float64 my_function(float64 input)
{
float64 returnValue;

returnValue = sin(input);
return(returnValue);
}

/*F**
 * NAME: void Build_table()
 *
 * TASK: Generates tables of mx+b values used for Custom Functions
 * in the E1415A.
 *
 * Generate the three coefficients for the CUSTOM FUNCTION algorithm:
 * a. The “exponent” value
 * b. The “slope” or “M” value
 * c. The “intercept” or “B” value.
 *
 * INPUT PARAMETERS:
 * float64 max_input - maximum input expected
 * float64 min_input - minimum input expected
 * float64 (*custom_function)(float64 input)
 * - pointer to user function
 * OUTPUT PARAMETERS
 * float64 *range - returned table range
 * float64 *offset - returned table offset
 * uint16 *conv_array - returned coefficient array:
 * (512 values for piecewise)
 *
 F/

void Build_table(float64 max_input, float64 min_input,
 float64 (*custom_function)(float64 input),
 float64 *range, float64 *offset,
 uint16 *conv_array)

{
uint16 M[128];
uint16 EX[128];
uint16 Bhigh[128];
uint16 Blow[128];
int32 B;
int16 ii;
int16 jj;
int32 Mfactor;
int32 Xfactor;
int32 Xofst;

float64 test_range;
float64 tbl_range;
float64 center;
float64 temp_range;

364 Generating User Defined Functions Appendix F

float64 t;
float64 slope;
float64 absslope;
float64 exponent;
float64 exponent2;
float64 input[129];
float64 result[129];

/*
* First calculate the mid point of the range of values from the min and max
* input values. The offset is the center of the range of min and max
* inputs. The purpose of the offset is to permit calculating the tables
* based upon a relative centering about the X axis. The offset simply
* permits the run-time code to send the corrected X values assuming
* the tables were built symetrically around X=0.
*/
 center = min_input + (max_input - min_input) / 2.0F;
 *offset = center;
 temp_range = max_input - center;
 test_range = (temp_range < 0.0)? -temp_range : temp_range;
/*
* Now calculate the closest binary representation of the test_range such
* that the new binary value is equal to or greater than the calculated
* test_range. Start with the lowest range(1/2^128) and step up until the
* new binary range is equal or greater than the test_range.
*/
 tbl_range = two_to_the_N(128); /* 2^28 */
 tbl_range = 1.0/tbl_range;
 while (test_range > tbl_range)

{
tbl_range *= 2;
}

 *range = tbl_range;

 Xofst = 157; /* exponent bias for DSP calculations */

/*
* Now divide the full range of the table into 128 segments (129 points)
* scanning first the positive side of the X-axis and then the negative
* side of the X-axis.
*
* Note that 129 points are calculated in order to generate a line segment
* for calculating slope.
*
* Also note that the entire binary range is built to include the min
* and max values entered as min_input and max_input.
*/

 for (ii=0 ; ii<=64 ; ii++) /* 0 to +FS */
 {
 input[ii] = center + ((tbl_range/64.0)*(float64)ii);
 result[ii] = (*custom_function)(input[ii]);

 if (ii == 0) continue; /* This is the first point - skip slope */

 jj = 64 + ii - 1; /* generate numbers for prev segment */
/* for second and subsequent points */

 t = result[ii-1]; /* using prev seg base */
 if (t< 0.0) t *= -1.0; /* use abs value (magnitude) of t */

/* compute the exponent of the offset (B is 31 bits) */

Appendix F Generating User Defined Functions 365

 if (t!=0.0)
 { /* don’t take log of zero */

 exponent = 31.0 - (log10(t)/log10(2.0));/* take log base 2 */
 }
else
 {

 exponent = 100.0;
 }

/* compute slope in bits (each table entry represents 512 bits) */
 slope = (result[ii] - result[ii-1]) / 512.0;

/* don’t take the log of a negative slope */
 absslope = (slope < 0)? -slope : slope;

/* compute the exponent of the slope (M is 16 bits) */
if (absslope != 0)
 {
 exponent2 = 15.0 -(log10(absslope)/log10(2.0));
 }
else
 {
 exponent2 = 100.0;
 }

/* Choose the smallest exponent — maximize resolution */
 if (exponent2 < exponent) exponent = exponent2;

 Xfactor = (int32)(exponent);

if (t != 0)
 {
 int32 ltemp = round32f(log10(t) / log10(2.0));
 if ((Xfactor + ltemp) > 30)

{
Xfactor = 30 - ltemp;
}

 }

 Mfactor = round32f(two_to_the_N(Xfactor)*slope);
 if (Mfactor == 32768)

 {
 /* There is an endpoint problem. Re-compute if on endpoint */
 Xfactor—;
 Mfactor =round32f(two_to_the_N(Xfactor)*slope);
 }
if ((Mfactor<=32767) && (Mfactor>= -32768))
 {
 /* only save if M is within limits */
 /* Adjust EX to match runtime.asm */
 EX[jj] = (uint16)(Xofst - Xfactor);
 M[jj] = (uint16)(Mfactor & 0xFFFF); /* remove leading 1’s*/
 B = round32f(two_to_the_N(Xfactor)*result[ii-1]);
 Bhigh[jj] = (uint16)((B >> 16) & 0x0000FFFF);
 Blow[jj] = (uint16)(B & 0x0000FFFF);
 }

 } /* end for */

 for (ii=0 ; ii<=64 ; ii++) /* 0 to -FS */
 {
 input[ii] = center - ((tbl_range/64.0)*(float64)(ii));
 result[ii] = (*custom_function)(input[ii]);

366 Generating User Defined Functions Appendix F

 if (ii == 0) continue; /* This is the first point - skip slope */

 jj = ii - 1; /* generate numbers for prev segment */
/* for second and subsequent points */

 t = result[ii-1]; /* using prev seg base */
 if (t< 0.0) t *= -1.0; /* use abs value (magnitude) of t */

/* compute the exponent of the offset (B is 31 bits) */
 if (t!=0.0)

 { /* don’t take log of zero */
 exponent = 31.0 - (log10(t)/log10(2.0));/* take log base 2 */

 }
else
 {

 exponent = 100.0;
 }

/* compute slope in bits (each table entry represents 512 bits) */
 slope = (result[ii] - result[ii-1]) / 512.0;

/* don’t take the log of a negative slope */
 absslope = (slope < 0)? -slope : slope;

/* compute the exponent of the slope (M is 16 bits) */
if (absslope != 0)
 {
 exponent2 = 15.0 -(log10(absslope)/log10(2.0));
 }
else
 {
 exponent2 = 100.0;
 }

/* Choose the smallest exponent — maximize resolution */
 if (exponent2 < exponent) exponent = exponent2;

 Xfactor = (int32)(exponent);

if (t != 0)
 {
 int32 ltemp = round32f(log10(t) / log10(2.0));
 if ((Xfactor + ltemp) > 30)

{
Xfactor = 30 - ltemp;
}

 }

 Mfactor = round32f(two_to_the_N(Xfactor)*slope);
 if (Mfactor == 32768)

 {
 /* There is an endpoint problem. Re-compute if on endpoint */
 Xfactor—;
 Mfactor =round32f(two_to_the_N(Xfactor)*slope);
 }
if ((Mfactor<=32767) && (Mfactor>= -32768))
 {
 /* only save if M is within limits */
 /* Adjust EX to match runtime.asm */
 EX[jj] = (uint16)(Xofst - Xfactor);
 M[jj] = (uint16)(Mfactor & 0xFFFF); /* remove leading 1’s*/
 B = round32f(two_to_the_N(Xfactor)*result[ii-1]);

Appendix F Generating User Defined Functions 367

 Bhigh[jj] = (uint16)((B >> 16) & 0x0000FFFF);
 Blow[jj] = (uint16)(B & 0x0000FFFF);
 }

 } /* end for */
/*
* Build actual tables for downloading into the E1415 memory.
*/
 for (ii=0 ; ii<128 ; ii++)

 { /* copy 64 sets of coefficents */
 conv_array[ii*4] = M[ii];
 conv_array[ii*4+1] = EX[ii];
 conv_array[ii*4+2] = Bhigh[ii];
 conv_array[ii*4+3] = Blow[ii];

/*
 printf(“%d %d %d %d %d\n”,ii,M[ii],EX[ii],Bhigh[ii],Blow[ii]);

*/
 }

 return;
}

/* Main program */
/*ARGSUSED*/ /* Keeps lint happy */
int main(int argc, char *argv[])
{
 /* Main program local variable declarations */
 char *algorithm; /* Algorithm string */
 int alg_num; /* Algorithm number being loaded */
 char string[333]; /* Holds error information */
 int32 error; /* Holds error number */

#if 0 /* Set to 1 if reading algorithm files */
 /* Check pass parameters */
 if ((argc < 2) || (argc > 33)) { /* Must have 1 to 32 algorithms */
 usage(argv[0]);
 exit(1);
 }
#endif

 INST_STARTUP(); /* Initialize the C-SCPI routines */

#if 0 /* Set to 1 to open interface session */
 /* If you need to open a VXI device session, here’s how to do it. You need
 * a VXI device session if the V382 is to source or respond to VXI
 * backplane triggers (SICL ixtrig or ionintr calls).
 */
 if (! (vxi = iopen(“vxi”))) {

(void) fprintf(stderr, “SICL error: failed to open vxi interface.\n”);
(void) fprintf(stderr, “SICL error %d: %s\n”,

 igeterrno(), igeterrstr(igeterrno()));
exit(1);

 }
#endif

 /* Open the E1415 device session with error checking. Copy and modify
 * these lines if you need to open other instruments.
 */
 INST_OPEN(e1415, E1415_ADDR); /* Open the E1415 */
 if (! e1415) { /* Did it open? */

(void) fprintf(stderr, “Failed to open the E1415 at address %s\n”,
 E1415_ADDR);

368 Generating User Defined Functions Appendix F

(void) fprintf(stderr, “C-SCPI open error was %d\n”, cscpi_open_error);
(void) fprintf(stderr, “SICL error was %d: %s\n”,

 igeterrno(), igeterrstr(igeterrno()));
exit(1);

 }
 /* Check for startup errors */
 INST_QUERY(e1415,"syst:err?\n", “%d,%S”, &error, string);
 if (error) {
 (void) printf(“syst:err %d,%s\n”, error, string);
 exit(1);
 }

 /* Usually, you’ll want to start from a known instrument state. The
 * following provides this.
 */
 INST_CLEAR(e1415); /* Selected device clear */
 INST_SEND(e1415, “*RST;*CLS\n”);

#if 0 /* Set to 1 to do self test */
 /* Does the E1415 pass self-test? */
 {
 int test_result; /* Result of E1415 self-test */

test_result = -1; /* Make sure it gets assigned */
INST_QUERY(e1415, “*TST?\n”, “%d”, &test_result);
if (test_result) {
 (void) fprintf(stderr, “E1415A failed self-test\n”);
 exit(1);
}

 }
#endif

 /* Setup SCP functions */
 INST_SEND(e1415, “sens:func:volt (@116)\n”); /* Analog in volts */
 INST_SEND(e1415, “sour:func:cond (@141)\n”); /* Digital output */

#if 0 /* Set to 1 to do calibration */
 /* Perform Calibrate, if necessary */
 {
 int cal_result; /* Result of E1415 self-test */

cal_result = -1; /* Make sure it gets assigned */
INST_QUERY(e1415, “*CAL?\n”, “%d”, &cal_result);
if (cal_result) {
 (void) fprintf(stderr, “E1415A failed calibration\n”);
 (void) fprintf(stderr, “Check FIFO for channel errors\n”);
 exit(1);
}

 }
#endif

 /* Configure Trigger Subsystem and Data Format */

 INST_SEND(e1415, “trig:sour timer;:trig:timer .001\n”);
 INST_SEND(e1415, “samp:timer 10e-6\n”); /* default */
 INST_SEND(e1415, “form real,32\n”);

 /* Download Globals */
 /* INST_SEND(e1415, “alg:def ‘globals’,’static float x;’\n”); */

 /* Download Custom Function */

Appendix F Generating User Defined Functions 369

 {
 float64 maxInput; /* set to maximum expected input*/
 float64 minInput; /* set to minimum expected input*/
 float64 tableOffset; /* offset used in building table*/
 uint16 coef_array[512]; /* 512 elements */
 float64 tableRange; /* Range on which table was built*/

 maxInput = 2;
 minInput = -2;
 Build_table(maxInput, minInput, my_function, &tableRange,
 &tableOffset, coef_array);

 /* Download the table range and the table array to the card */
 /* Piecewise requires 128 sets of table values */

 INST_SEND(e1415,"ALGorithm:FUNCtion:DEFine ‘sin’,%f,%f,%1024b",
 tableRange, tableOffset, coef_array);
 }

 /* Download algorithms */
#if 0 /* Set to 1 if algorithms passed in as files */
 /* Get an algorithm(s) from the passed filename(s). We assign sequential
 * algorithm numbers to each successive file name: ALG1, ALG2, etc. when
 * you execute this program as “<progname> lang1 lang2 lang3 ...”
 */
 alg_num = 1; /* Starting algorithm number */
 while (argc > alg_num) {

 algorithm = get_algorithm(argv[alg_num]); /* Read the algorithm */

 /* Define the algorithm */
 {
 char alg[6]; /* Temporary algorithm name */
 (void) sprintf(alg, “ALG%d”, alg_num);
 INST_SEND(e1415, “alg:def %S,%*B\n”, alg,
 strlen(algorithm) + 1, algorithm);

 /* Check for algorithm errors */
 INST_QUERY(e1415,"syst:err?\n", “%d,%S”, &error, string);
 if (error) {
 (void) printf(“While loading file %s, syst:err %d,%s\n”,
 argv[alg_num], error, string);
 exit(1);
 }
 }

 /* Free the malloc’ed memory */
 free(algorithm);

 alg_num++; /* Next algorithm */
 }
 (void) printf(“All %d algorithm(s) loaded without errors\n\n”, alg_num-1);

#else /* Download algorithm with in-line code */
algorithm = “ \n”
“/* Example algorithm uses Custom Function.\n”
“ * This algorithms builds a haversine.\n”
“ */\n”
“\n”

370 Generating User Defined Functions Appendix F

“ static float radians = 0, y;\n”
 “ y = sin(radians);\n”

“ \n”;
 INST_SEND(e1415, “alg:def ‘ALG1’,%*B\n”, strlen(algorithm) + 1,
algorithm);
#endif

 /* Preset Algorithm variables */

 /* Initiate Trigger System - start scanning and running algorithms */

 INST_SEND(e1415,"init\n");

 /* Print out results */
 {
 float32 pi = 3.14159654;
 float32 radians;
 float32 y;

/* Note that alg:scal? won’t execute until alg:upd is done */
 for (radians = -pi/2.0; radians < pi/2.0; radians += pi / 10.0) {
 INST_SEND(e1415, “alg:scal ‘alg1’,’radians’,%f\n”, radians);
 INST_SEND(e1415, “alg:upd\n”);
 INST_QUERY(e1415, “alg:scal? ‘alg1’,’y’\n”, “%f”, &y);
 printf(“’C’ sin(%f): %f, ‘E1415A’ sin(%f): %f\n”,radians,
 (float32)sin((float64)radians), radians, y);
 }
 }

#if 1 /* Set to 1 if using User interactive commands to E1415 */
 /* Call this function if you want to be able to type SCPI commands and
 * see their responses. NOTE: switch to FORM,ASC to retrieve
 * ASCII numbers during interactive mode.
 */
 INST_SEND(e1415,"form asc\n");
 do_interactive(); /* Calls cscpi_exe() in a loop */
#endif
#if 0
 /* C-CSPI way to check for errors */
 INST_QUERY(e1415,"syst:err?\n", “%d,%S”, &error, string);
 if (error) {
 (void) printf(“syst:err %d,%s\n”, error, string);
 exit(1);
 }
#endif

 return 0; /* Normal end of program */
}

#if 0

Example of results from program:

‘C’ sin(-1.570798): -1.000000, ‘E1415A’ sin(-1.570798): -0.999905
‘C’ sin(-1.256639): -0.951057, ‘E1415A’ sin(-1.256639): -0.950965
‘C’ sin(-0.942479): -0.809018, ‘E1415A’ sin(-0.942479): -0.808944
‘C’ sin(-0.628319): -0.587786, ‘E1415A’ sin(-0.628319): -0.587740
‘C’ sin(-0.314160): -0.309017, ‘E1415A’ sin(-0.314160): -0.308998
‘C’ sin(0.000000): 0.000000, ‘E1415A’ sin(0.000000): 0.000000
‘C’ sin(0.314160): 0.309017, ‘E1415A’ sin(0.314160): 0.308998
‘C’ sin(0.628319): 0.587786, ‘E1415A’ sin(0.628319): 0.587740
‘C’ sin(0.942479): 0.809018, ‘E1415A’ sin(0.942479): 0.808944
‘C’ sin(1.256639): 0.951057, ‘E1415A’ sin(1.256639): 0.950965

Appendix F Generating User Defined Functions 371

‘C’ sin(1.570798): 1.000000, ‘E1415A’ sin(1.570798): 0.999905

#endif

RMB Version

10 ! RE-SAVE “SINE_FN.ASC”
20 !
30 ! DESCRIPTION: Example program to illustrate the use of Custom Functions
40 ! in the E1415A. This example shows the use of RMB.
50 ! This example shows the creation of a Haversine function.
60 !
70 ! The Build_table subprogram receives the minimum and maximum ranges
80 ! over which the function it to be built. You supply the algebraic
90 ! expression for FNMy_function().
100 !
110 ! **
120 INTEGER Coef_array(0:511),Error
130 REAL Hpibintfc,Cmdmodule,E1413_ladd,E1413addr
140 INTEGER Lin_piecewise,Ilin(0:3),Ipiec(0:514)
150 REAL Min_input,Max_input
160 DIM String$[333]
170 ASSIGN @Err TO 1
180 !
190 ! **
200 ! The following three lines should be customized for each installation
210 Hpibintfc=7 ! Hpib interface number for E1415
220 Cmdmodule=9 ! Hpib address for command module for E1415
230 E1415_ladd=208 ! Logical address for E1415 card
240 ! **
250 ON TIMEOUT Hpibintfc,12 GOTO End_
260 E1415addr=Hpibintfc*10000+Cmdmodule*100+E1415_ladd/8
270 ASSIGN @E1415 TO E1415addr
280 ASSIGN @Bus TO Hpibintfc;FORMAT OFF
290 !
300 OUTPUT @E1415;"*RST;*CLS"
310 OUTPUT @E1415;"*IDN?"
320 ENTER @E1415;String$
330 PRINT String$
340 !
350 ! Select the Domain values for the function.
360 !
370 Min_input=-2
380 Max_input=2
390 CALL
Build_table(Max_input,Min_input,Table_range,Table_offset,Coef_array(*))
400 !
410 ! Download the function table and define the function
420 !
430 Ipiec(0)=256*NUM(“#”)+NUM(“4") !build block
440 Ipiec(1)=256*NUM(“1")+NUM(”0") !1024 bytes
450 Ipiec(2)=256*NUM(“2")+NUM(”4") !512 Integers
460 FOR Ii=0 TO 511
470 Ipiec(Ii+3)=Coef_array(Ii)
480 NEXT Ii
490 GOSUB Err_check
500 OUTPUT @E1415;"ALG:FUNC:DEF ‘sin’,";Table_range;",";Table_offset;",";
510 OUTPUT @Bus;Ipiec(*) !add block
520 OUTPUT @Bus;CHR$(10);END !terminate
530 !

372 Generating User Defined Functions Appendix F

540 GOSUB Err_check
550 !
560 ! Now define an algorithm to use sin(x) and tests its functionality.
570 !
580 OUTPUT @E1415;"alg:def ‘alg1’,’static float
y,radians=0;y=sin(radians);’"
590 OUTPUT @E1415;"form ascii;:trig:timer .001;:init"
600 RAD ! use radians
610 GOSUB Err_check
620 FOR Radians=-PI/2 TO PI/2 STEP PI/10
630 OUTPUT @E1415;"alg:scal ‘alg1’,’radians’,";Radians;";upd"
640 OUTPUT @E1415;"alg:scal? ‘alg1’,’y’"
650 ENTER @E1415;Y
660 PRINT USING This;"’RMB’ sin(radians): “;SIN(Radians);” ‘E1415A’
sin(Radians): “;Y
670 This:IMAGE K,SD.DDDD,K,SD.DDDD
680 NEXT Radians
690 STOP
700 End_: !
710 PRINT “HPIB TIMEOUT”
720 STOP
730 Err_check:REPEAT ! Check for any errors
740 OUTPUT @E1415;"SYST:ERR?"
750 ENTER @E1415;Error,String$
760 IF Error THEN
770 OUTPUT @Err;"Error returned: “&VAL$(Error)&.” “&String$
780 END IF
790 UNTIL Error=0
800 RETURN
810 END
820 ! ## 830 !
840 ! Subprogram Build_eu_table
850 ! TASK: Generates tables of mx+b values for downloading to E1415 DSP
860 !
870 ! Generate the three coefficients for the EU algorithm:
880 ! a. The “exponent” value
890 ! b. The “slope” or “M” value
900 ! c. The “intercept” or “B” value.
910 !
920 ! INPUT PARAMETERS:
930 ! REAL Min_input - lowest expected value
940 ! REAL Max_input - largest expected value
950 ! zero generates piecewise table
960 ! OUTPUT PARAMETERS
970 ! REAL Table_range - returned table range
980 ! REAL Table_offset - how much to adjust X for shifted
function
990 ! INTEGER Coef_array - returned coeficient array:
1000 ! (512 values)
1010 !
1020 Build_eu_table:SUB Build_table(REAL
Min_input,Max_input,Table_range,Table_offset,INTEGER Coef_array(*))
1030 INTEGER M(128),Ex(128),Bhigh(128),Blow(128),Xofst,Shift,Ii,Jj
1040 INTEGER Xfactor,Ltemp
1050 REAL Input(129),Result(129),Test_range,T,Exponent,Exponent2
1060 REAL Slope,Absslope,Mfactor,B,Bl
1070 !
1080 ! Calculate the mid point of the range.
1090 !
1100 Center=Min_input+(Max_input-Min_input)/2
1110 Table_offset=Center
1120 Temp_range=Max_input-Center
1130 Test_range=ABS(Temp_range)

Appendix F Generating User Defined Functions 373

1140 !
1150 ! Now calculate the closest binary representation of the test_range
1160 !
1170 Tbl_range=1/2^128
1180 WHILE Test_range>Tbl_range
1190 Tbl_range=Tbl_range*2
1200 END WHILE
1210 Table_range=Tbl_range
1220 Xofst=157 ! exponent bias for DSP calculations
1230 !
1240 ! Now divide the full range of the table into 128 segments (129 points)
1250 ! from -Rnge to +Rnge using the Custom() function function. We
1260 ! then generate the M, B and Ex values for the table to be downloaded.
1270 !
1280 ! Note that we actually calculate 129 points but generate 128 sets of
1290 ! M, B and Ex values.
1300 !
1310 !
1320 FOR Ii=0 TO 64 STEP 1
1330 Input(Ii)=Center+((Tbl_range/64.0)*Ii)
1340 Result(Ii)=FNMy_function(Input(Ii))
1350 IF Ii=0 THEN GOTO Loopend1! This is the first point
1360 !
1370 ! for second and subsequent points
1380 Jj=64+Ii-1 ! generate numbers for prev segment
1390 T=ABS(Result(Ii-1)) ! using abs value of prev seg base
1400 !
1410 ! compute the exponent of the offset (B is 31 bits)
1420 IF T<>0. THEN ! don’t take log of zero
1430 Exponent=31.0-(LGT(T)/LGT(2.0)) ! take log base 2
1440 ELSE
1450 Exponent=100.0
1460 END IF
1470 !
1480 ! compute slope in bits (each table entry represents 512 bits)
1490 Slope=(Result(Ii)-Result(Ii-1))/512.0
1500 !
1510 ! don’t take the log of a negative slope
1520 Absslope=ABS(Slope)
1530 !
1540 ! compute the exponent of the slope (M is 16 bits)
1550 IF Absslope<>0. THEN
1560 Exponent2=15.0-(LGT(Absslope)/LGT(2.0))
1570 ELSE
1580 Exponent2=100.0
1590 END IF
1600 ! Choose the smallest exponent — maximize resolution
1610 IF Exponent2<Exponent THEN Exponent=Exponent2
1620 Xfactor=INT(Exponent) !convert to integer
1630 IF T<>0. THEN
1640 Ltemp=PROUND(LGT(T)/LGT(2.0),0)
1650 IF (Xfactor+Ltemp)>30 THEN Xfactor=30-Ltemp
1660 END IF
1670 Mfactor=PROUND(2^Xfactor*Slope,0)
1680 IF Mfactor=32768.0 THEN
1690 ! There is an endpoint problem. Re-compute if on endpoint
1700 Xfactor=Xfactor-1
1710 Mfactor=PROUND(2^Xfactor*Slope,0)
1720 END IF
1730 IF (Mfactor<=32767.0 AND Mfactor>=-32768.0) THEN
1740 ! only save if M is in limits
1750 Ex(Jj)=Xofst-Xfactor

374 Generating User Defined Functions Appendix F

1760 M(Jj)=Mfactor ! remove leading 1’s
1770 B=PROUND(2^Xfactor*Result(Ii-1),0)
1780 Bhigh(Jj)=INT(B/65536.0) ! truncates
1790 Bl=B-(Bhigh(Jj)*65536.0)
1800 IF Bl>32767 THEN Bl=Bl-65536
1810 Blow(Jj)=Bl
1820 END IF
1830 Loopend1:NEXT Ii
1840 FOR Ii=0 TO 64 STEP 1
1850 Input(Ii)=Center-((Tbl_range/64.0)*Ii)
1860 Result(Ii)=FNMy_function(Input(Ii))
1870 IF Ii=0 THEN GOTO Loopend2! This is the first point
1880 !
1890 ! for second and subsequent points
1900 Jj=Ii-1 ! generate numbers for prev segment
1910 T=ABS(Result(Ii-1)) ! using abs value of prev seg base
1920 !
1930 ! compute the exponent of the offset (B is 31 bits)
1940 IF T<>0. THEN ! don’t take log of zero
1950 Exponent=31.0-(LGT(T)/LGT(2.0)) ! take log base 2
1960 ELSE
1970 Exponent=100.0
1980 END IF
1990 !
2000 ! compute slope in bits (each table entry represents 512 bits)
2010 Slope=(Result(Ii)-Result(Ii-1))/512.0
2020 !
2030 ! don’t take the log of a negative slope
2040 Absslope=ABS(Slope)
2050 !
2060 ! compute the exponent of the slope (M is 16 bits)
2070 IF Absslope<>0. THEN
2080 Exponent2=15.0-(LGT(Absslope)/LGT(2.0))
2090 ELSE
2100 Exponent2=100.0
2110 END IF
2120 ! Choose the smallest exponent — maximize resolution
2130 IF Exponent2<Exponent THEN Exponent=Exponent2
2140 Xfactor=INT(Exponent) !convert to integer
2150 IF T<>0. THEN
2160 Ltemp=PROUND(LGT(T)/LGT(2.0),0)
2170 IF (Xfactor+Ltemp)>30 THEN Xfactor=30-Ltemp
2180 END IF
2190 Mfactor=PROUND(2^Xfactor*Slope,0)
2200 IF Mfactor=32768.0 THEN
2210 ! There is an endpoint problem. Re-compute if on endpoint
2220 Xfactor=Xfactor-1
2230 Mfactor=PROUND(2^Xfactor*Slope,0)
2240 END IF
2250 IF (Mfactor<=32767.0 AND Mfactor>=-32768.0) THEN
2260 ! only save if M is in limits
2270 Ex(Jj)=Xofst-Xfactor
2280 M(Jj)=Mfactor ! remove leading 1’s
2290 B=PROUND(2^Xfactor*Result(Ii-1),0)
2300 Bhigh(Jj)=INT(B/65536.0) ! truncates
2310 Bl=B-(Bhigh(Jj)*65536.0)
2320 IF Bl>32767 THEN Bl=Bl-65536
2330 Blow(Jj)=Bl
2340 END IF
2350 Loopend2:NEXT Ii
2360 !
2370 ! Copy the calculated table values to the output array

Appendix F Generating User Defined Functions 375

2380 !
2390 !
2400 ! Store M, E and B terms in array
2410 !
2420 FOR Ii=0 TO 127
2430 ! copy 128 sets of coefficents
2440 Coef_array(Ii*4)=M(Ii)
2450 Coef_array(Ii*4+1)=Ex(Ii)
2460 Coef_array(Ii*4+2)=Bhigh(Ii)
2470 Coef_array(Ii*4+3)=Blow(Ii)
2480 ! PRINT Ii,M(Ii),Ex(Ii),Bhigh(Ii),Blow(Ii)
2490 NEXT Ii
2500 SUBEND
2510 !
2520 ! **
2530 ! Insert your desired function here
2540 !
2550 DEF FNMy_function(REAL In_val)
2560 RETURN SIN(In_val)
2570 FNEND

376 Generating User Defined Functions Appendix F

Appendix G

Example Program Listings

This appendix includes listings of example programs that are not printed in
other parts of the manual. The example “simp_pid.cs” is shown here
because the listing in Chapter 3 is a shortened version.

· simp_pid.cs . page 377

· file_alg.cs . page 383

· swap.cs . page 389

· tri_sine.cs . page 396

simp_pid.cs
/* $Header: $
 *
 * C-SCPI Example program for the E1415A Algorithmic Closed Loop Controller
 *
 * simp_pid.cs
 *
 * This program example shows the use of the intrinsic function PIDB.
 *
 * This is a template for building E1415A C programs that may use C-SCPI
 * or SICL to control instruments.
 */

/* Standard include files */
#include <stdlib.h> /* Most programs use one or more

 * functions from the C standard
 * library.
 */

#include <stdio.h> /* Most programs will also use standard
 * I/O functions.
 */

#include <stddef.h> /* This file is also often useful */
#include <math.h> /* Needed for any floating point fn’s */

/* Other system include files */
/* Whenever using system or library calls, check the call description to see
 * which include files should be included.
 */

/* Instrument control include files */
#include <cscpi.h> /* C-SCPI include file */

/* Declare any constants that will be useful to the program. In particular,
 * it is usually best to put instrument addresses in this area to make the code
 * more maintainable.
 */
#define E1415_ADDR “vxi,208" /* The SICL address of your E1415 */
INST_DECL(e1415, “E1415A”, REGISTER); /* E1415 */

/* Use something like this for GPIB and Agilent E1405/6 Command Module */

Appendix G Example Program Listings 377

/* #define E1415_ADDR “hpib,22,26" /* The SICL address of your E1415 */
/*INST_DECL(e1415, “E1415A”, MESSAGE); /* E1415 */

/* Declare instruments that will be accessed with SICL. These declarations
 * can also be moved into local contexts.
 */
INST vxi; /* VXI interface session */

/* Trap instrument errors. If this function is used, it will be called every
 * time a C-SCPI instrument puts an error in the error queue. As written, the
 * function will figure out which instrument generated the error, retrieve the
 * error, print a message and exit. You may want to modify the way the error
 * is printed or comment out the exit if you want the program to continue.
 *
 * Note that this works only on REGISTER based instruments, because it was
 * a C-SCPI register-based feature, not a general programming improvement.
 * If you’re using MESSAGE instruments, you’ll still have to do SYST:ERR?:
 *
 * If your test program generates errors on purpose, you probably don’t want
 * this error function. If so, set the following “#if 1" to ”#if 0." This
 * function is most useful when you’re trying to get your program running.
 */
#if 1 /* Set to 0 to skip trapping errors */
/*ARGSUSED*/ /* Keeps lint happy */
void cscpi_error(INST id, int err)
{
 char errorbuf[255]; /* Holds instrument error message */
 char idbuf[255]; /* Holds instrument response to *IDN? */

 cscpi_exe(id, “*IDN?\n”, 6, idbuf, 255);
 cscpi_exe(id, “SYST:ERR?\n”, 10, errorbuf, 255);
 (void) fprintf(stderr, “Instrument error %s from %s\n”, errorbuf, idbuf);
}
#endif

/* The following routine allows you to type SCPI commands and see the results.
 * If you don’t call this from your program, set the following “#if 1" to
 * “#if 0."
 */
#if 1 /* Set to 0 to skip this routine */
void do_interactive(void)
{
 char command[5000];
 char result[5000];
 int32 error;
 char string[256];

 for(;;) {
(void) printf(“SCPI command: ”);
(void) fflush(stdout);
/* repeat until it actually gets something*/
while (!gets(command));
if (!*command) {
 break;
}
result[0] = 0;
cscpi_exe(e1415, command, strlen(command), result, sizeof(result));
INST_QUERY(e1415, “syst:err?”, “%d,%s”, &error, string);
while (error) {

378 Example Program Listings Appendix G

 (void) printf(“syst:err %d,’%s’\n”, error, string);
 INST_QUERY(e1415,"syst:err?", “%d,%s”, &error, string);

}
if (result[0]) {
 (void) printf(“result: %s\n”, result);
}

 }
}
#endif

/* Print usage information */
void usage(char *prog_name)
{
 (void) fprintf(stderr, “usage: %s algorithm_file...\n”, prog_name);
}

/* Get an algorithm from a filename */
static char *get_algorithm(char *file_name)
{
 FILE *f; /* Algorithm file pointer */
 int32 a_size; /* Algorithm size */
 int c; /* Character read from input */
 char *algorithm; /* Points to algorithm string */

 f = fopen(file_name, “r”);
 if (! f) {
 (void) fprintf(stderr, “Error: can’t open algorithm file ‘%s’\n”,
 file_name);
 exit(1);
 }

 a_size = 0; /* Count length of algorithm */
 while (getc(f) != EOF) {
 a_size++;
 }

 rewind(f);
 algorithm = malloc(a_size + 1); /* Storage for algorithm */
 a_size = 0; /* Use as array index */
 while ((c = getc(f)) != EOF) { /* Read the algorithm */
 algorithm[a_size] = c;
 a_size++;
 }
 algorithm[a_size] = 0; /* Null terminate */
 (void) fclose(f);

 return algorithm; /* Return algorithm string */
}

/* Main program */
/*ARGSUSED*/ /* Keeps lint happy */
int main(int argc, char *argv[])
{
 /* Main program local variable declarations */
 char *algorithm; /* Algorithm string */
 int alg_num; /* Algorithm number being loaded */
 char string[333]; /* Holds error information */
 int32 error; /* Holds error number */

#if 0 /* Set to 1 if reading algorithm files */

Appendix G Example Program Listings 379

 /* Check pass parameters */
 if ((argc < 2) || (argc > 33)) { /* Must have 1 to 32 algorithms */
 usage(argv[0]);
 exit(1);
 }
#endif

 INST_STARTUP(); /* Initialize the C-SCPI routines */

#if 0 /* Set to 1 to open interface session */
 /* If you need to open a VXI device session, here’s how to do it. You need
 * a VXI device session if the V382 is to source or respond to VXI
 * backplane triggers (SICL ixtrig or ionintr calls).
 */
 if (! (vxi = iopen(“vxi”))) {

(void) fprintf(stderr, “SICL error: failed to open vxi interface.\n”);
(void) fprintf(stderr, “SICL error %d: %s\n”,

 igeterrno(), igeterrstr(igeterrno()));
exit(1);

 }
#endif

 /* Open the E1415 device session with error checking. Copy and modify
 * these lines if you need to open other instruments.
 */
 INST_OPEN(e1415, E1415_ADDR); /* Open the E1415 */
 if (! e1415) { /* Did it open? */

(void) fprintf(stderr, “Failed to open the E1415 at address %s\n”,
 E1415_ADDR);

(void) fprintf(stderr, “C-SCPI open error was %d\n”, cscpi_open_error);
(void) fprintf(stderr, “SICL error was %d: %s\n”,

 igeterrno(), igeterrstr(igeterrno()));
exit(1);

 }
 /* Check for startup errors */
 INST_QUERY(e1415,"syst:err?\n", “%d,%S”, &error, string);
 if (error) {
 (void) printf(“syst:err %d,%s\n”, error, string);
 exit(1);
 }

 /* Usually, you’ll want to start from a known instrument state. The
 * following provides this.
 */
 INST_CLEAR(e1415); /* Selected device clear */
 INST_SEND(e1415, “*RST;*CLS\n”);

#if 0 /* Set to 1 to do self test */
 /* Does the E1415 pass self-test? */
 {
 int test_result; /* Result of E1415 self-test */

test_result = -1; /* Make sure it gets assigned */
INST_QUERY(e1415, “*TST?\n”, “%d”, &test_result);
if (test_result) {
 (void) fprintf(stderr, “E1415A failed self-test\n”);
 exit(1);
}

 }

380 Example Program Listings Appendix G

#endif

 /* Setup SCP functions */
 INST_SEND(e1415, “sens:func:volt (@116)\n”); /* Analog in volts */
 INST_SEND(e1415, “sour:func:cond (@141)\n”); /* Digital output */

#if 0 /* Set to 1 to do calibration */
 /* Perform Calibrate, if necessary */
 {
 int cal_result; /* Result of E1415 self-test */

cal_result = -1; /* Make sure it gets assigned */
INST_QUERY(e1415, “*CAL?\n”, “%d”, &cal_result);
if (cal_result) {
 (void) fprintf(stderr, “E1415A failed calibration\n”);
 (void) fprintf(stderr, “Check FIFO for channel errors\n”);
 exit(1);
}

 }
#endif

 /* Configure Trigger Subsystem and Data Format */

 INST_SEND(e1415, “trig:sour timer;:trig:timer .001\n”);
 INST_SEND(e1415, “samp:timer 10e-6\n”); /* default */
 INST_SEND(e1415, “form real,32\n”);

 /* Download Globals */
 /* INST_SEND(e1415, “alg:def ‘globals’,’static float x;’\n”); */

 /* Download algorithms */
#if 0 /* Set to 1 if algorithms passed in as files */
 /* Get an algorithm(s) from the passed filename(s). We assign sequential
 * algorithm numbers to each successive file name: ALG1, ALG2, etc. when
 * you execute this program as “<progname> lang1 lang2 lang3 ...”
 */
 alg_num = 1; /* Starting algorithm number */
 while (argc > alg_num) {

 algorithm = get_algorithm(argv[alg_num]); /* Read the algorithm */

 /* Define the algorithm */
 {
 char alg[6]; /* Temporary algorithm name */

 (void) sprintf(alg, “ALG%d”, alg_num);
 INST_SEND(e1415, “alg:def %S, %*B\n”, alg,
 strlen(algorithm) + 1, algorithm);

 /* Check for algorithm errors */
 INST_QUERY(e1415,"syst:err?\n", “%d,%S”, &error, string);
 if (error) {
 (void) printf(“While loading file %s, syst:err %d,%s\n”,
 argv[alg_num], error, string);
 exit(1);
 }
 }

 /* Free the malloc’ed memory */
 free(algorithm);

 alg_num++; /* Next algorithm */

Appendix G Example Program Listings 381

 }
 (void) printf(“All %d algorithm(s) loaded without errors\n\n”, alg_num-1);

#else /* Download algorithms with in-line code */
 INST_SEND(e1415,"alg:def ‘alg1’,’PIDB(I116,O100,O141.B0)’\n");
#endif

 /* Preset Algorithm variables */
 INST_SEND(e1415,"alg:scal ‘alg1’,’Setpoint’,%f\n", 3.0);
 INST_SEND(e1415,"alg:scal ‘alg1’,’P_factor’,%f\n", 0.0001);
 INST_SEND(e1415,"alg:scal ‘alg1’,’I_factor’,%f\n", 0.00025);
 INST_SEND(e1415,"alg:upd\n");

 /* Initiate Trigger System - start scanning and running algorithms */

 INST_SEND(e1415,"init\n");

 /* Alter run-time variables and Retrieve Data */
 while(1) {

float32 setpoint = 0, process_info[4];
int i;

/* type in -100 to exit */
printf(“Enter desired setpoint: ”);
scanf(“%f”,&setpoint);
if (setpoint == -100.00) break;

 INST_SEND(e1415,"alg:scal ‘alg1’,’Setpoint’,%f\n", setpoint);
 INST_SEND(e1415,"alg:upd\n");

for (i = 0; i < 10 ; i++) { /* read CVT 10 times */
 /* ALG1 has elments 10-13 in CVT */

INST_QUERY(e1415, “data:cvt? (@10:13)”,"%f",&process_info);
printf(“Process variable: %f, %f, %f, %f\n”,process_info[0],

process_info[1],process_info[2],process_info[3]);
}

#if 0 /* Set to 1 if using User interactive commands to E1415 */
 /* Call this function if you want to be able to type SCPI commands and
 * see their responses. NOTE: switch to FORM,ASC to retrieve
 * ASCII numbers during interactive mode.
 */
 do_interactive(); /* Calls cscpi_exe() in a loop */
#endif
#if 0
 /* C-CSPI way to check for errors */
 INST_QUERY(e1415,"syst:err?\n", “%d,%S”, &error, string);
 if (error) {
 (void) printf(“syst:err %d,%s\n”, error, string);
 exit(1);
 }
#endif
 }

 return 0; /* Normal end of program */
}

#if 0

C-CSPI program.

Example of changing from Setpoint=3 to Setpoint=9 over a
trigger event period of 1msec using PIDB. Setpoint, error,
output and status are shown:

382 Example Program Listings Appendix G

Enter desired setpoint: 9

Process variable: 3.000122, -0.000122, 0.001538, 0.000000
Process variable: 2.998657, 6.001343, 0.003638, 0.000000
Process variable: 5.744141, 3.255859, 0.004178, 0.000000
Process variable: 7.165039, 1.834961, 0.004494, 0.000000
Process variable: 8.086914, 0.383301, 0.004673, 0.000000
Process variable: 9.018555, -0.018555, 0.004655, 0.000000
Process variable: 9.056152, -0.056152, 0.004637, 0.000000
Process variable: 9.054688, -0.054688, 0.004623, 0.000000
Process variable: 9.046387, -0.046387, 0.004612, 0.000000
Process variable: 9.010254, -0.010254, 0.004601, 0.000000

#endif

file_alg.cs
/* $Header: $
 *
 * C-SCPI Example program for the E1415A Algorithmic Closed Loop Controller
 *
 * file_alg.cs
 *
 * This example shows how to load algorithms from files. This example
 * works properly with the file “mxplusb”, which contains the E1415A
 * algorithm for calculating various combinations of Mx+B.
 *
 * This is a template for building E1415A C programs that may use C-SCPI
 * or SICL to control instruments.
 */

/* Standard include files */
#include <stdlib.h> /* Most programs use one or more

 * functions from the C standard
 * library.
 */

#include <stdio.h> /* Most programs will also use standard
 * I/O functions.
 */

#include <stddef.h> /* This file is also often useful */
#include <math.h> /* Needed for any floating point fn’s */

/* Other system include files */
/* Whenever using system or library calls, check the call description to see
 * which include files should be included.
 */

/* Instrument control include files */
#include <cscpi.h> /* C-SCPI include file */

/* Declare any constants that will be useful to the program. In particular,
 * it is usually best to put instrument addresses in this area to make the code
 * more maintainable.
 */
#define E1415_ADDR “vxi,208" /* The SICL address of your E1415 */
INST_DECL(e1415, “E1415A”, REGISTER); /* E1415 */

/* Use something like this for GPIB and Agilent E1405/6 Command Module */

Appendix G Example Program Listings 383

/* #define E1415_ADDR “hpib,22,26" /* The SICL address of your E1415 */
/*INST_DECL(e1415, “E1415A”, MESSAGE); /* E1415 */

/* Declare instruments that will be accessed with SICL. These declarations
 * can also be moved into local contexts.
 */
INST vxi; /* VXI interface session */

/* Trap instrument errors. If this function is used, it will be called every
 * time a C-SCPI instrument puts an error in the error queue. As written, the
 * function will figure out which instrument generated the error, retrieve the
 * error, print a message and exit. You may want to modify the way the error
 * is printed or comment out the exit if you want the program to continue.
 *
 * Note that this works only on REGISTER based instruments, because it was
 * a C-SCPI register-based feature, not a general programming improvement.
 * If you’re using MESSAGE instruments, you’ll still have to do SYST:ERR?:
 *
 * If your test program generates errors on purpose, you probably don’t want
 * this error function. If so, set the following “#if 1" to ”#if 0." This
 * function is most useful when you’re trying to get your program running.
 */
#if 1 /* Set to 0 to skip trapping errors */
/*ARGSUSED*/ /* Keeps lint happy */
void cscpi_error(INST id, int err)
{
 char errorbuf[255]; /* Holds instrument error message */
 char idbuf[255]; /* Holds instrument response to *IDN? */

 cscpi_exe(id, “*IDN?\n”, 6, idbuf, 255);
 cscpi_exe(id, “SYST:ERR?\n”, 10, errorbuf, 255);
 (void) fprintf(stderr, “Instrument error %s from %s\n”, errorbuf, idbuf);
}
#endif

/* The following routine allows you to type SCPI commands and see the results.
 * If you don’t call this from your program, set the following “#if 1" to
 * “#if 0."
 */
#if 1 /* Set to 0 to skip this routine */
void do_interactive(void)
{
 char command[5000];
 char result[5000];
 int32 error;
 char string[256];

 for(;;) {
(void) printf(“SCPI command: ”);
(void) fflush(stdout);
/* repeat until it actually gets something*/
while (!gets(command));
if (!*command) {
 break;
}
result[0] = 0;
cscpi_exe(e1415, command, strlen(command), result, sizeof(result));
INST_QUERY(e1415, “syst:err?”, “%d,%s”, &error, string);
while (error) {

384 Example Program Listings Appendix G

 (void) printf(“syst:err %d,’%s’\n”, error, string);
 INST_QUERY(e1415,"syst:err?", “%d,%s”, &error, string);

}
if (result[0]) {
 (void) printf(“result: %s\n”, result);
}

 }
}
#endif

/* Print usage information */
void usage(char *prog_name)
{
 (void) fprintf(stderr, “usage: %s algorithm_file...\n”, prog_name);
}

/* Get an algorithm from a filename */
static char *get_algorithm(char *file_name)
{
 FILE *f; /* Algorithm file pointer */
 int32 a_size; /* Algorithm size */
 int c; /* Character read from input */
 char *algorithm; /* Points to algorithm string */

 f = fopen(file_name, “r”);
 if (! f) {
 (void) fprintf(stderr, “Error: can’t open algorithm file ‘%s’\n”,
 file_name);
 exit(1);
 }

 a_size = 0; /* Count length of algorithm */
 while (getc(f) != EOF) {
 a_size++;
 }

 rewind(f);
 algorithm = malloc(a_size + 1); /* Storage for algorithm */
 a_size = 0; /* Use as array index */
 while ((c = getc(f)) != EOF) { /* Read the algorithm */
 algorithm[a_size] = c;
 a_size++;
 }
 algorithm[a_size] = 0; /* Null terminate */
 (void) fclose(f);

 return algorithm; /* Return algorithm string */
}

/* Main program */
/*ARGSUSED*/ /* Keeps lint happy */
int main(int argc, char *argv[])
{
 /* Main program local variable declarations */
 char *algorithm; /* Algorithm string */
 int alg_num; /* Algorithm number being loaded */
 char string[333]; /* Holds error information */
 int32 error; /* Holds error number */

#if 1 /* Set to 1 if reading algorithm files */

Appendix G Example Program Listings 385

 /* Check pass parameters */
 if ((argc < 2) || (argc > 33)) { /* Must have 1 to 32 algorithms */
 usage(argv[0]);
 exit(1);
 }
#endif

 INST_STARTUP(); /* Initialize the C-SCPI routines */

#if 0 /* Set to 1 to open interface session */
 /* If you need to open a VXI device session, here’s how to do it. You need
 * a VXI device session if the V382 is to source or respond to VXI
 * backplane triggers (SICL ixtrig or ionintr calls).
 */
 if (! (vxi = iopen(“vxi”))) {

(void) fprintf(stderr, “SICL error: failed to open vxi interface.\n”);
(void) fprintf(stderr, “SICL error %d: %s\n”,

 igeterrno(), igeterrstr(igeterrno()));
exit(1);

 }
#endif

 /* Open the E1415 device session with error checking. Copy and modify
 * these lines if you need to open other instruments.
 */
 INST_OPEN(e1415, E1415_ADDR); /* Open the E1415 */
 if (! e1415) { /* Did it open? */

(void) fprintf(stderr, “Failed to open the E1415 at address %s\n”,
 E1415_ADDR);

(void) fprintf(stderr, “C-SCPI open error was %d\n”, cscpi_open_error);
(void) fprintf(stderr, “SICL error was %d: %s\n”,

 igeterrno(), igeterrstr(igeterrno()));
exit(1);

 }
 /* Check for startup errors */
 INST_QUERY(e1415,"syst:err?\n", “%d,%S”, &error, string);
 if (error) {
 (void) printf(“syst:err %d,%s\n”, error, string);
 exit(1);
 }

 /* Usually, you’ll want to start from a known instrument state. The
 * following provides this.
 */
 INST_CLEAR(e1415); /* Selected device clear */
 INST_SEND(e1415, “*RST;*CLS\n”);

#if 0 /* Set to 1 to do self test */
 /* Does the E1415 pass self-test? */
 {
 int test_result; /* Result of E1415 self-test */

test_result = -1; /* Make sure it gets assigned */
INST_QUERY(e1415, “*TST?\n”, “%d”, &test_result);
if (test_result) {
 (void) fprintf(stderr, “E1415A failed self-test\n”);
 exit(1);
}

 }

386 Example Program Listings Appendix G

#endif

 /* Setup SCP functions */
 INST_SEND(e1415, “sens:func:volt (@116)\n”); /* Analog in volts */
 INST_SEND(e1415, “sour:func:cond (@141)\n”); /* Digital output */

#if 0 /* Set to 1 to do calibration */
 /* Perform Calibrate, if necessary */
 {
 int cal_result; /* Result of E1415 self-test */

cal_result = -1; /* Make sure it gets assigned */
INST_QUERY(e1415, “*CAL?\n”, “%d”, &cal_result);
if (cal_result) {
 (void) fprintf(stderr, “E1415A failed calibration\n”);
 (void) fprintf(stderr, “Check FIFO for channel errors\n”);
 exit(1);
}

 }
#endif

 /* Configure Trigger Subsystem and Data Format */

 INST_SEND(e1415, “trig:sour timer;:trig:timer .001\n”);
 INST_SEND(e1415, “samp:timer 10e-6\n”); /* default */
 INST_SEND(e1415, “form real,32\n”);

 /* Download Globals */
 /* INST_SEND(e1415, “alg:def ‘globals’,’static float x;’\n”); */

 /* Download algorithms */
#if 1 /* Set to 1 if algorithms passed in as files */
 /* Get an algorithm(s) from the passed filename(s). We assign sequential
 * algorithm numbers to each successive file name: ALG1, ALG2, etc. when
 * you execute this program as “<progname> lang1 lang2 lang3 ...”
 */
 alg_num = 1; /* Starting algorithm number */
 while (argc > alg_num) {

 algorithm = get_algorithm(argv[alg_num]); /* Read the algorithm */

 /* Define the algorithm */
 {
 char alg[6]; /* Temporary algorithm name */

 (void) sprintf(alg, “ALG%d”, alg_num);
 INST_SEND(e1415, “alg:def %S, %*B\n”, alg,
 strlen(algorithm) + 1, algorithm);

 /* Check for algorithm errors */
 INST_QUERY(e1415,"syst:err?\n", “%d,%S”, &error, string);
 if (error) {
 (void) printf(“While loading file %s, syst:err %d,%s\n”,
 argv[alg_num], error, string);
 exit(1);
 }
 }

 /* Free the malloc’ed memory */
 free(algorithm);

 alg_num++; /* Next algorithm */

Appendix G Example Program Listings 387

 }
 (void) printf(“All %d algorithm(s) loaded without errors\n\n”, alg_num-1);

#else /* Download algorithms with in-line code */
 INST_SEND(e1415,"alg:def ‘alg1’,’PIDB(I116,O100,O141.B0)’\n");
#endif

 /* Preset Algorithm variables */
 INST_SEND(e1415,"alg:scal ‘alg1’,’M’,%f\n", 1.234);
 INST_SEND(e1415,"alg:scal ‘alg1’,’B’,%f\n", 5.678);
 INST_SEND(e1415,"alg:upd\n");

 /* Initiate Trigger System - start scanning and running algorithms */

 INST_SEND(e1415,"init\n");

 /* Alter run-time variables and Retrieve Data */
{
float32 sync, array[4];
int i;

for (i = 0; i < 10 ; i++) { /* make 10 changes to ‘x’ */
 INST_SEND(e1415,"alg:scal ‘alg1’,’x’,%f\n", (float32) i);
 INST_SEND(e1415,"alg:scal ‘alg1’,’sync’,%f\n", 1); /* set sync */
 INST_SEND(e1415,"alg:upd\n");

/* The following alg:scal? command will not complete if the
 * update has not occured. Then, it’s a matter of waiting for
 * the algorithm to complete and set sync = 2. This should

 * happen almost instantly since the algorithm is executing
 * every 1msec based upon trig:timer .001 above.
 */
sync = 0;
while (sync != 2.0) /* wait until algorithm sets sync to 2 */

INST_QUERY(e1415, “alg:scal? ‘alg1’,’sync’”,"%f",&sync);
/* read results of Mx+B calculations */
INST_QUERY(e1415, “data:cvt? (@10:13)”,"%f",&array);
printf(“Array contents: %f, %f, %f, %f\n”,array[0],

array[1],array[2],array[3]);
}

#if 0 /* Set to 1 if using User interactive commands to E1415 */
 /* Call this function if you want to be able to type SCPI commands and
 * see their responses. NOTE: switch to FORM,ASC to retrieve
 * ASCII numbers during interactive mode.
 */
 do_interactive(); /* Calls cscpi_exe() in a loop */
#endif
#if 0
 /* C-CSPI way to check for errors */
 INST_QUERY(e1415,"syst:err?\n", “%d,%S”, &error, string);
 if (error) {
 (void) printf(“syst:err %d,%s\n”, error, string);
 exit(1);
 }
#endif
 }

 return 0; /* Normal end of program */
}

#if 0

388 Example Program Listings Appendix G

/* Example algorithm that calculates 4 Mx+B values upon
 * signal that sync == 1. M and B terms set by application
 * program.
 *
 * filename: mxplusb
 */
 static float M, B, x, sync;
 if (First_loop) sync = 0;
 if (sync == 1) {

writecvt(M*x+B, 10);
writecvt(-(M*x+B), 11);
writecvt((M*x+B)/2,12);
writecvt(2*(M*x+B),13);
sync = 2;

 }

Results from running this program with the following
syntax: <progname> mxplusb

Array contents: 5.678000, -5.678000, 2.839000, 11.356000
Array contents: 6.912000, -6.912000, 3.456000, 13.823999
Array contents: 8.146000, -8.146000, 4.073000, 16.292000
Array contents: 9.379999, -9.379999, 4.690000, 18.759998
Array contents: 10.613999, -10.613999, 5.307000, 21.227999
Array contents: 11.848000, -11.848000, 5.924000, 23.695999
Array contents: 13.082000, -13.082000, 6.541000, 26.164000
Array contents: 14.315999, -14.315999, 7.158000, 28.631998
Array contents: 15.549999, -15.549999, 7.775000, 31.099998
Array contents: 16.783998, -16.783998, 8.391999, 33.567997

#endif

swap.cs
/* $Header: $
 *
 * C-SCPI Example program for the E1415A Algorithmic Closed Loop Controller
 *
 * swap.cs
 *
 * This example shows how to perform algorithm swapping. This is an
 * extension of the example file file_alg.cs
 *
 * This is a template for building E1415A C programs that may use C-SCPI
 * or SICL to control instruments.
 */

/* Standard include files */
#include <stdlib.h> /* Most programs use one or more

 * functions from the C standard
 * library.
 */

#include <stdio.h> /* Most programs will also use standard
 * I/O functions.
 */

#include <stddef.h> /* This file is also often useful */
#include <math.h> /* Needed for any floating point fn’s */

/* Other system include files */

Appendix G Example Program Listings 389

/* Whenever using system or library calls, check the call description to see
 * which include files should be included.
 */

/* Instrument control include files */
#include <cscpi.h> /* C-SCPI include file */

/* Declare any constants that will be useful to the program. In particular,
 * it is usually best to put instrument addresses in this area to make the code
 * more maintainable.
 */
#define E1415_ADDR “vxi,208" /* The SICL address of your E1415 */
INST_DECL(e1415, “E1415A”, REGISTER); /* E1415 */

/* Use something like this for GPIB and Agilent E1405/6 Command Module */
/* #define E1415_ADDR “hpib,22,26" /* The SICL address of your E1415 */
/*INST_DECL(e1415, “E1415A”, MESSAGE); /* E1415 */

/* Declare instruments that will be accessed with SICL. These declarations
 * can also be moved into local contexts.
 */
INST vxi; /* VXI interface session */

/* Trap instrument errors. If this function is used, it will be called every
 * time a C-SCPI instrument puts an error in the error queue. As written, the
 * function will figure out which instrument generated the error, retrieve the
 * error, print a message and exit. You may want to modify the way the error
 * is printed or comment out the exit if you want the program to continue.
 *
 * Note that this works only on REGISTER based instruments, because it was
 * a C-SCPI register-based feature, not a general programming improvement.
 * If you’re using MESSAGE instruments, you’ll still have to do SYST:ERR?:
 *
 * If your test program generates errors on purpose, you probably don’t want
 * this error function. If so, set the following “#if 1" to ”#if 0." This
 * function is most useful when you’re trying to get your program running.
 */
#if 1 /* Set to 0 to skip trapping errors */
/*ARGSUSED*/ /* Keeps lint happy */
void cscpi_error(INST id, int err)
{
 char errorbuf[255]; /* Holds instrument error message */
 char idbuf[255]; /* Holds instrument response to *IDN? */

 cscpi_exe(id, “*IDN?\n”, 6, idbuf, 255);
 cscpi_exe(id, “SYST:ERR?\n”, 10, errorbuf, 255);
 (void) fprintf(stderr, “Instrument error %s from %s\n”, errorbuf, idbuf);
}
#endif

/* The following routine allows you to type SCPI commands and see the results.
 * If you don’t call this from your program, set the following “#if 1" to
 * “#if 0."
 */
#if 1 /* Set to 0 to skip this routine */
void do_interactive(void)
{
 char command[5000];

390 Example Program Listings Appendix G

 char result[5000];
 int32 error;
 char string[256];

 for(;;) {
(void) printf(“SCPI command: ”);
(void) fflush(stdout);
/* repeat until it actually gets something*/
while (!gets(command));
if (!*command) {
 break;
}
result[0] = 0;
cscpi_exe(e1415, command, strlen(command), result, sizeof(result));
INST_QUERY(e1415, “syst:err?”, “%d,%s”, &error, string);
while (error) {
 (void) printf(“syst:err %d,’%s’\n”, error, string);

 INST_QUERY(e1415,"syst:err?", “%d,%s”, &error, string);
}
if (result[0]) {
 (void) printf(“result: %s\n”, result);
}

 }
}
#endif

/* Print usage information */
void usage(char *prog_name)
{
 (void) fprintf(stderr, “usage: %s algorithm_file...\n”, prog_name);
}

/* Get an algorithm from a filename */
static char *get_algorithm(char *file_name)
{
 FILE *f; /* Algorithm file pointer */
 int32 a_size; /* Algorithm size */
 int c; /* Character read from input */
 char *algorithm; /* Points to algorithm string */

 f = fopen(file_name, “r”);
 if (! f) {
 (void) fprintf(stderr, “Error: can’t open algorithm file ‘%s’\n”,
 file_name);
 exit(1);
 }

 a_size = 0; /* Count length of algorithm */
 while (getc(f) != EOF) {
 a_size++;
 }

 rewind(f);
 algorithm = malloc(a_size + 1); /* Storage for algorithm */
 a_size = 0; /* Use as array index */
 while ((c = getc(f)) != EOF) { /* Read the algorithm */
 algorithm[a_size] = c;
 a_size++;
 }
 algorithm[a_size] = 0; /* Null terminate */
 (void) fclose(f);

Appendix G Example Program Listings 391

 return algorithm; /* Return algorithm string */
}

/* Main program */
/*ARGSUSED*/ /* Keeps lint happy */
int main(int argc, char *argv[])
{
 /* Main program local variable declarations */
 char *algorithm; /* Algorithm string */
 int alg_num; /* Algorithm number being loaded */
 char string[333]; /* Holds error information */
 int32 error; /* Holds error number */

#if 0 /* Set to 1 if reading algorithm files */
 /* Check pass parameters */
 if ((argc < 2) || (argc > 33)) { /* Must have 1 to 32 algorithms */
 usage(argv[0]);
 exit(1);
 }
#endif

 INST_STARTUP(); /* Initialize the C-SCPI routines */

#if 0 /* Set to 1 to open interface session */
 /* If you need to open a VXI device session, here’s how to do it. You need
 * a VXI device session if the V382 is to source or respond to VXI
 * backplane triggers (SICL ixtrig or ionintr calls).
 */
 if (! (vxi = iopen(“vxi”))) {

(void) fprintf(stderr, “SICL error: failed to open vxi interface.\n”);
(void) fprintf(stderr, “SICL error %d: %s\n”,

 igeterrno(), igeterrstr(igeterrno()));
exit(1);

 }
#endif

 /* Open the E1415 device session with error checking. Copy and modify
 * these lines if you need to open other instruments.
 */
 INST_OPEN(e1415, E1415_ADDR); /* Open the E1415 */
 if (! e1415) { /* Did it open? */

(void) fprintf(stderr, “Failed to open the E1415 at address %s\n”,
 E1415_ADDR);

(void) fprintf(stderr, “C-SCPI open error was %d\n”, cscpi_open_error);
(void) fprintf(stderr, “SICL error was %d: %s\n”,

 igeterrno(), igeterrstr(igeterrno()));
exit(1);

 }
 /* Check for startup errors */
 INST_QUERY(e1415,"syst:err?\n", “%d,%S”, &error, string);
 if (error) {
 (void) printf(“syst:err %d,%s\n”, error, string);
 exit(1);
 }

 /* Usually, you’ll want to start from a known instrument state. The
 * following provides this.
 */

392 Example Program Listings Appendix G

 INST_CLEAR(e1415); /* Selected device clear */
 INST_SEND(e1415, “*RST;*CLS\n”);

#if 0 /* Set to 1 to do self test */
 /* Does the E1415 pass self-test? */
 {
 int test_result; /* Result of E1415 self-test */

test_result = -1; /* Make sure it gets assigned */
INST_QUERY(e1415, “*TST?\n”, “%d”, &test_result);
if (test_result) {
 (void) fprintf(stderr, “E1415A failed self-test\n”);
 exit(1);
}

 }
#endif

 /* Setup SCP functions */
 INST_SEND(e1415, “sens:func:volt (@116)\n”); /* Analog in volts */
 INST_SEND(e1415, “sour:func:cond (@141)\n”); /* Digital output */

#if 0 /* Set to 1 to do calibration */
 /* Perform Calibrate, if necessary */
 {
 int cal_result; /* Result of E1415 self-test */

cal_result = -1; /* Make sure it gets assigned */
INST_QUERY(e1415, “*CAL?\n”, “%d”, &cal_result);
if (cal_result) {
 (void) fprintf(stderr, “E1415A failed calibration\n”);
 (void) fprintf(stderr, “Check FIFO for channel errors\n”);
 exit(1);
}

 }
#endif

 /* Configure Trigger Subsystem and Data Format */

 INST_SEND(e1415, “trig:sour timer;:trig:timer .001\n”);
 INST_SEND(e1415, “samp:timer 10e-6\n”); /* default */
 INST_SEND(e1415, “form real,32\n”);

 /* Download Globals */
 /* INST_SEND(e1415, “alg:def ‘globals’,’static float x;’\n”); */

 /* Download algorithms */
#if 0 /* Set to 1 if algorithms passed in as files */
 /* Get an algorithm(s) from the passed filename(s). We assign sequential
 * algorithm numbers to each successive file name: ALG1, ALG2, etc. when
 * you execute this program as “<progname> lang1 lang2 lang3 ...”
 */
 alg_num = 1; /* Starting algorithm number */
 while (argc > alg_num) {

 algorithm = get_algorithm(argv[alg_num]); /* Read the algorithm */

 /* Define the algorithm */
 {
 char alg[6]; /* Temporary algorithm name */
 (void) sprintf(alg, “ALG%d”, alg_num);
 INST_SEND(e1415, “alg:def %S,%*B\n”, alg,

Appendix G Example Program Listings 393

 strlen(algorithm) + 1, algorithm);

 /* Check for algorithm errors */
 INST_QUERY(e1415,"syst:err?\n", “%d,%S”, &error, string);
 if (error) {
 (void) printf(“While loading file %s, syst:err %d,%s\n”,
 argv[alg_num], error, string);
 exit(1);
 }
 }

 /* Free the malloc’ed memory */
 free(algorithm);

 alg_num++; /* Next algorithm */
 }
 (void) printf(“All %d algorithm(s) loaded without errors\n\n”, alg_num-1);

#else /* Download algorithms with in-line code */
algorithm = “ \n”\
“/* Example algorithm that calculates 4 Mx+B values upon\n”
“ * signal that sync == 1. M and B terms set by application\n”
“ * program. \n”
“ */\n”
“ static float M, B, x, sync;\n”
“ if (First_loop) sync = 0;\n”
“ if (sync == 1) {\n”
“ writecvt(M*x+B, 10);\n”
“ writecvt(-(M*x+B), 11);\n”
“ writecvt((M*x+B)/2,12);\n”
“ writecvt(2*(M*x+B),13);\n”
“ sync = 2;\n”
“ } \n”;

 INST_SEND(e1415, “alg:def ‘ALG1’,500,%*B\n”, strlen(algorithm) + 1,
algorithm);
#endif

algorithm = “ \n”\
“/* Example algorithm that calculates 4 Mx+B values upon\n”
“ * signal that sync == 1. M and B terms set by application\n”
“ * program. Calculations are different than above.\n”
“ */\n”
“ static float M, B, x, sync;\n”
“ if (First_loop) sync = 0;\n”
“ if (sync == 1) {\n”
“ writecvt(-(M*x+B), 10);\n”
“ writecvt(M*x+B, 11);\n”
“ writecvt(2*(M*x+B),12);\n”
“ writecvt((M*x+B)/2,13);\n”
“ sync = 2;\n”
“ } \n”;

 /* Preset Algorithm variables */
 INST_SEND(e1415,"alg:scal ‘alg1’,’M’,%f\n", 1.234);
 INST_SEND(e1415,"alg:scal ‘alg1’,’B’,%f\n", 5.678);
 INST_SEND(e1415,"alg:upd\n");

 /* Initiate Trigger System - start scanning and running algorithms */

 INST_SEND(e1415,"init\n");

 /* Alter run-time variables and Retrieve Data */

394 Example Program Listings Appendix G

{
float32 sync, array[4];
int i;

for (i = 0; i < 10 ; i++) { /* make 10 changes to ‘x’ */
 INST_SEND(e1415,"alg:scal ‘alg1’,’x’,%f\n", (float32) i);
 INST_SEND(e1415,"alg:scal ‘alg1’,’sync’,%f\n", 1); /* set sync */
 INST_SEND(e1415,"alg:upd\n");

/* The following alg:scal? command will not complete if the
 * update has not occured. Then, it’s a matter of waiting for
 * the algorithm to complete and set sync = 2. This should

 * happen almost instantly since the algorithm is executing
 * every 1msec based upon trig:timer .001 above.
 */
sync = 0;
while (sync != 2.0) /* wait until algorithm sets sync to 2 */

INST_QUERY(e1415, “alg:scal? ‘alg1’,’sync’”,"%f",&sync);
/* read results of Mx+B calculations */
INST_QUERY(e1415, “data:cvt? (@10:13)”,"%f",&array);
printf(“Array contents: %f, %f, %f, %f\n”,array[0],

array[1],array[2],array[3]);
}

 INST_SEND(e1415, “alg:def ‘ALG1’, %*B\n”,strlen(algorithm) + 1,
algorithm);
 INST_SEND(e1415, “alg:upd\n”);

printf(“\nExecuting now with different algorithm\n\n”);
/* Repeat with different algorithm running. */

for (i = 0; i < 10 ; i++) { /* make 10 changes to ‘x’ */
 INST_SEND(e1415,"alg:scal ‘alg1’,’x’,%f\n", (float32) i);
 INST_SEND(e1415,"alg:scal ‘alg1’,’sync’,%f\n", 1); /* set sync */
 INST_SEND(e1415,"alg:upd\n");

/* The following alg:scal? command will not complete if the
 * update has not occured. Then, it’s a matter of waiting for
 * the algorithm to complete and set sync = 2. This should

 * happen almost instantly since the algorithm is executing
 * every 1msec based upon trig:timer .001 above.
 */
sync = 0;
while (sync != 2.0) /* wait until algorithm sets sync to 2 */

INST_QUERY(e1415, “alg:scal? ‘alg1’,’sync’”,"%f",&sync);
/* read results of Mx+B calculations */
INST_QUERY(e1415, “data:cvt? (@10:13)”,"%f",&array);
printf(“Array contents: %f, %f, %f, %f\n”,array[0],

array[1],array[2],array[3]);
}

#if 1 /* Set to 1 if using User interactive commands to E1415 */
 /* Call this function if you want to be able to type SCPI commands and
 * see their responses. NOTE: switch to FORM,ASC to retrieve
 * ASCII numbers during interactive mode.
 */
 do_interactive(); /* Calls cscpi_exe() in a loop */
#endif
#if 0
 /* C-CSPI way to check for errors */
 INST_QUERY(e1415,"syst:err?\n", “%d,%S”, &error, string);
 if (error) {
 (void) printf(“syst:err %d,%s\n”, error, string);
 exit(1);
 }
#endif
 }

Appendix G Example Program Listings 395

 return 0; /* Normal end of program */
}

#if 0

/* Example algorithm that calculates 4 Mx+B values upon
 * signal that sync == 1. M and B terms set by application
 * program.
 *
 * filename: mxplusb
 */
 static float M, B, x, sync;
 if (First_loop) sync = 0;
 if (sync == 1) {

writecvt(M*x+B, 10);
writecvt(-(M*x+B), 11);
writecvt((M*x+B)/2,12);
writecvt(2*(M*x+B),13);
sync = 2;

 }

Results from running this program with the following
syntax: <progname> mxplusb

Array contents: 5.678000, -5.678000, 2.839000, 11.356000
Array contents: 6.912000, -6.912000, 3.456000, 13.823999
Array contents: 8.146000, -8.146000, 4.073000, 16.292000
Array contents: 9.379999, -9.379999, 4.690000, 18.759998
Array contents: 10.613999, -10.613999, 5.307000, 21.227999
Array contents: 11.848000, -11.848000, 5.924000, 23.695999
Array contents: 13.082000, -13.082000, 6.541000, 26.164000
Array contents: 14.315999, -14.315999, 7.158000, 28.631998
Array contents: 15.549999, -15.549999, 7.775000, 31.099998
Array contents: 16.783998, -16.783998, 8.391999, 33.567997

#endif

tri_sine.cs
/* $Header: $
 *
 * C-SCPI Example program for the E1415A Algorithmic Closed Loop Controller
 *
 * tri_sine.cs
 *
 * This example shows how to use Custom Functions in the E1415A by generating
 * both a triangle and sine wave to a current output DAC.
 *
 * This is a template for building E1415A C programs that may use C-SCPI
 * or SICL to control instruments.
 */

/* Standard include files */
#include <stdlib.h> /* Most programs use one or more

 * functions from the C standard
 * library.
 */

#include <stdio.h> /* Most programs will also use standard
 * I/O functions.

396 Example Program Listings Appendix G

 */
#include <stddef.h> /* This file is also often useful */
#include <math.h> /* Needed for any floating point fn’s */

/* Other system include files */
/* Whenever using system or library calls, check the call description to see
 * which include files should be included.
 */

/* Instrument control include files */
#include <cscpi.h> /* C-SCPI include file */

/* Declare any constants that will be useful to the program. In particular,
 * it is usually best to put instrument addresses in this area to make the code
 * more maintainable.
 */
#define E1415_ADDR “vxi,208" /* The SICL address of your E1415 */
INST_DECL(e1415, “E1415A”, REGISTER); /* E1415 */

/* Use something like this for GPIB and Agilent E1405/6 Command Module */
/* #define E1415_ADDR “hpib,22,26" /* The SICL address of your E1415 */
/*INST_DECL(e1415, “E1415A”, MESSAGE); /* E1415 */

/* Declare instruments that will be accessed with SICL. These declarations
 * can also be moved into local contexts.
 */
INST vxi; /* VXI interface session */

/* Trap instrument errors. If this function is used, it will be called every
 * time a C-SCPI instrument puts an error in the error queue. As written, the
 * function will figure out which instrument generated the error, retrieve the
 * error, print a message and exit. You may want to modify the way the error
 * is printed or comment out the exit if you want the program to continue.
 *
 * Note that this works only on REGISTER based instruments, because it was
 * a C-SCPI register-based feature, not a general programming improvement.
 * If you’re using MESSAGE instruments, you’ll still have to do SYST:ERR?:
 *
 * If your test program generates errors on purpose, you probably don’t want
 * this error function. If so, set the following “#if 1" to ”#if 0." This
 * function is most useful when you’re trying to get your program running.
 */
#if 1 /* Set to 0 to skip trapping errors */
/*ARGSUSED*/ /* Keeps lint happy */
void cscpi_error(INST id, int err)
{
 char errorbuf[255]; /* Holds instrument error message */
 char idbuf[255]; /* Holds instrument response to *IDN? */

 cscpi_exe(id, “*IDN?\n”, 6, idbuf, 255);
 cscpi_exe(id, “SYST:ERR?\n”, 10, errorbuf, 255);
 (void) fprintf(stderr, “Instrument error %s from %s\n”, errorbuf, idbuf);
}
#endif

/* The following routine allows you to type SCPI commands and see the results.
 * If you don’t call this from your program, set the following “#if 1" to
 * “#if 0."

Appendix G Example Program Listings 397

 */
#if 1 /* Set to 0 to skip this routine */
void do_interactive(void)
{
 char command[5000];
 char result[5000];
 int32 error;
 char string[256];

 for(;;) {
(void) printf(“SCPI command: ”);
(void) fflush(stdout);
/* repeat until it actually gets something*/
while (!gets(command));
if (!*command) {
 break;
}
result[0] = 0;
cscpi_exe(e1415, command, strlen(command), result, sizeof(result));
INST_QUERY(e1415, “syst:err?”, “%d,%s”, &error, string);
while (error) {
 (void) printf(“syst:err %d,’%s’\n”, error, string);

 INST_QUERY(e1415,"syst:err?", “%d,%s”, &error, string);
}
if (result[0]) {
 (void) printf(“result: %s\n”, result);
}

 }
}
#endif

/* Print usage information */
void usage(char *prog_name)
{
 (void) fprintf(stderr, “usage: %s algorithm_file...\n”, prog_name);
}

/* Get an algorithm from a filename */
static char *get_algorithm(char *file_name)
{
 FILE *f; /* Algorithm file pointer */
 int32 a_size; /* Algorithm size */
 int c; /* Character read from input */
 char *algorithm; /* Points to algorithm string */

 f = fopen(file_name, “r”);
 if (! f) {
 (void) fprintf(stderr, “Error: can’t open algorithm file ‘%s’\n”,
 file_name);
 exit(1);
 }

 a_size = 0; /* Count length of algorithm */
 while (getc(f) != EOF) {
 a_size++;
 }

 rewind(f);
 algorithm = malloc(a_size + 1); /* Storage for algorithm */
 a_size = 0; /* Use as array index */
 while ((c = getc(f)) != EOF) { /* Read the algorithm */

398 Example Program Listings Appendix G

 algorithm[a_size] = c;
 a_size++;
 }
 algorithm[a_size] = 0; /* Null terminate */
 (void) fclose(f);

 return algorithm; /* Return algorithm string */
}

/*F**
 * NAME: static float64 two_to_the_N()
 *
 * TASK: Calculates 2^n
 */

static float64 two_to_the_N(int32 n)
{
/* compute 2^n */
float64 r = 1;
int32 i;
 for (i = 0; i < n; i++)
 r *= 2;
 return (r);
}

/*F**
 * NAME: static int32 round32f()
 *
 * TASK: Rounds a 32-bit floating point number.
 */

static int32 round32f(float64 number)
 {
 /* add or subtract 0.5 to round based on sign of number */
 float64 half = (number > 0.0)? 0.5 : -0.5 ;
 return((int32)(number + half));
 }

/*F**
 * NAME: static float64 my_function()
 *
 * TASK: User-supplied function for calculating desired results of f(x).
 *
 * HAVERSINE
 */

float64 my_function(float64 input)
{
float64 returnValue;

returnValue = sin(input);
return(returnValue);
}

/*F**
 * NAME: void Build_table()
 *
 * TASK: Generates tables of mx+b values used for Custom Functions
 * in the E1415A.
 *
 * Generate the three coefficients for the CUSTOM FUNCTION algorithm:
 * a. The “exponent” value
 * b. The “slope” or “M” value

Appendix G Example Program Listings 399

 * c. The “intercept” or “B” value.
 *
 * INPUT PARAMETERS:
 * float64 max_input - maximum input expected
 * float64 min_input - minimum input expected
 * float64 (*custom_function)(float64 input)
 * - pointer to user function
 * OUTPUT PARAMETERS
 * float64 *range - returned table range
 * float64 *offset - returned table offset
 * uint16 *conv_array - returned coeficient array:
 * (512 values for piecewise)
 *
 F/

void Build_table(float64 max_input, float64 min_input,
 float64 (*custom_function)(float64 input),
 float64 *range, float64 *offset,
 uint16 *conv_array)

{
uint16 M[128];
uint16 EX[128];
uint16 Bhigh[128];
uint16 Blow[128];
int32 B;
int16 ii;
int16 jj;
int32 Mfactor;
int32 Xfactor;
int32 Xofst;

float64 test_range;
float64 tbl_range;
float64 center;
float64 temp_range;
float64 t;
float64 slope;
float64 absslope;
float64 exponent;
float64 exponent2;
float64 input[129];
float64 result[129];

/*
* First calculate the mid point of the range of values from the min and max
* input values. The offset is the center of the range of min and max
* inputs. The purpose of the offset is to permit calculating the tables
* based upon a relative centering about the X axis. The offset simply
* permits the run-time code to send the corrected X values assuming
* the tables were built symetrically around X=0.
*/
 center = min_input + (max_input - min_input) / 2.0F;
 *offset = center;
 temp_range = max_input - center;
 test_range = (temp_range < 0.0)? -temp_range : temp_range;
/*
* Now calculate the closest binary representation of the test_range such
* that the new binary value is equal to or greater than the calculated
* test_range. Start with the lowest range(1/2^128) and step up until the
* new binary range is equal or greater than the test_range.
*/
 tbl_range = two_to_the_N(128); /* 2^28 */

400 Example Program Listings Appendix G

 tbl_range = 1.0/tbl_range;
 while (test_range > tbl_range)

{
tbl_range *= 2;
}

 *range = tbl_range;

 Xofst = 157; /* exponent bias for DSP calculations */

/*
* Now divide the full range of the table into 128 segments (129 points)
* scanning first the positive side of the X-axis and then the negative
* side of the X-axis.
*
* Note that 129 points are calculated in order to generate a line segment
* for calculating slope.
*
* Also note that the entire binary range is built to include the min
* and max values entered as min_input and max_input.
*/

 for (ii=0 ; ii<=64 ; ii++) /* 0 to +FS */
 {
 input[ii] = center + ((tbl_range/64.0)*(float64)ii);
 result[ii] = (*custom_function)(input[ii]);

 if (ii == 0) continue; /* This is the first point - skip slope */

 jj = 64 + ii - 1; /* generate numbers for prev segment */
/* for second and subsequent points */

 t = result[ii-1]; /* using prev seg base */
 if (t< 0.0) t *= -1.0; /* use abs value (magnitude) of t */

/* compute the exponent of the offset (B is 31 bits) */
 if (t!=0.0)

 { /* don’t take log of zero */
 exponent = 31.0 - (log10(t)/log10(2.0));/* take log base 2 */

 }
else
 {

 exponent = 100.0;
 }

/* compute slope in bits (each table entry represents 512 bits) */
 slope = (result[ii] - result[ii-1]) / 512.0;

/* don’t take the log of a negative slope */
 absslope = (slope < 0)? -slope : slope;

/* compute the exponent of the slope (M is 16 bits) */
if (absslope != 0)
 {
 exponent2 = 15.0 -(log10(absslope)/log10(2.0));
 }
else
 {
 exponent2 = 100.0;
 }

/* Choose the smallest exponent — maximize resolution */
 if (exponent2 < exponent) exponent = exponent2;

Appendix G Example Program Listings 401

 Xfactor = (int32)(exponent);

if (t != 0)
 {
 int32 ltemp = round32f(log10(t) / log10(2.0));
 if ((Xfactor + ltemp) > 30)

{
Xfactor = 30 - ltemp;
}

 }

 Mfactor = round32f(two_to_the_N(Xfactor)*slope);
 if (Mfactor == 32768)

 {
 /* There is an endpoint problem. Re-compute if on endpoint */
 Xfactor—;
 Mfactor =round32f(two_to_the_N(Xfactor)*slope);
 }
if ((Mfactor<=32767) && (Mfactor>= -32768))
 {
 /* only save if M is within limits */
 /* Adjust EX to match runtime.asm */
 EX[jj] = (uint16)(Xofst - Xfactor);
 M[jj] = (uint16)(Mfactor & 0xFFFF); /* remove leading 1’s*/
 B = round32f(two_to_the_N(Xfactor)*result[ii-1]);
 Bhigh[jj] = (uint16)((B >> 16) & 0x0000FFFF);
 Blow[jj] = (uint16)(B & 0x0000FFFF);
 }

 } /* end for */

 for (ii=0 ; ii<=64 ; ii++) /* 0 to -FS */
 {
 input[ii] = center - ((tbl_range/64.0)*(float64)(ii));
 result[ii] = (*custom_function)(input[ii]);

 if (ii == 0) continue; /* This is the first point - skip slope */

 jj = ii - 1; /* generate numbers for prev segment */
/* for second and subsequent points */

 t = result[ii-1]; /* using prev seg base */
 if (t< 0.0) t *= -1.0; /* use abs value (magnitude) of t */

/* compute the exponent of the offset (B is 31 bits) */
 if (t!=0.0)

 { /* don’t take log of zero */
 exponent = 31.0 - (log10(t)/log10(2.0));/* take log base 2 */

 }
else
 {

 exponent = 100.0;
 }

/* compute slope in bits (each table entry represents 512 bits) */
 slope = (result[ii] - result[ii-1]) / 512.0;

/* don’t take the log of a negative slope */
 absslope = (slope < 0)? -slope : slope;

/* compute the exponent of the slope (M is 16 bits) */
if (absslope != 0)
 {

402 Example Program Listings Appendix G

 exponent2 = 15.0 -(log10(absslope)/log10(2.0));
 }
else
 {
 exponent2 = 100.0;
 }

/* Choose the smallest exponent — maximize resolution */
 if (exponent2 < exponent) exponent = exponent2;

 Xfactor = (int32)(exponent);

if (t != 0)
 {
 int32 ltemp = round32f(log10(t) / log10(2.0));
 if ((Xfactor + ltemp) > 30)

{
Xfactor = 30 - ltemp;
}

 }

 Mfactor = round32f(two_to_the_N(Xfactor)*slope);
 if (Mfactor == 32768)

 {
 /* There is an endpoint problem. Re-compute if on endpoint */
 Xfactor—;
 Mfactor =round32f(two_to_the_N(Xfactor)*slope);
 }
if ((Mfactor<=32767) && (Mfactor>= -32768))
 {
 /* only save if M is within limits */
 /* Adjust EX to match runtime.asm */
 EX[jj] = (uint16)(Xofst - Xfactor);
 M[jj] = (uint16)(Mfactor & 0xFFFF); /* remove leading 1’s*/
 B = round32f(two_to_the_N(Xfactor)*result[ii-1]);
 Bhigh[jj] = (uint16)((B >> 16) & 0x0000FFFF);
 Blow[jj] = (uint16)(B & 0x0000FFFF);
 }

 } /* end for */
/*
* Build actual tables for downloading into the E1415 memory.
*/
 for (ii=0 ; ii<128 ; ii++)

 { /* copy 64 sets of coefficients */
 conv_array[ii*4] = M[ii];
 conv_array[ii*4+1] = EX[ii];
 conv_array[ii*4+2] = Bhigh[ii];
 conv_array[ii*4+3] = Blow[ii];

/*
 printf(“%d %d %d %d %d\n”,ii,M[ii],EX[ii],Bhigh[ii],Blow[ii]);

*/
 }

 return;
}

/* Main program */
/*ARGSUSED*/ /* Keeps lint happy */
int main(int argc, char *argv[])
{
 /* Main program local variable declarations */
 char *algorithm; /* Algorithm string */
 int alg_num; /* Algorithm number being loaded */

Appendix G Example Program Listings 403

 char string[333]; /* Holds error information */
 int32 error; /* Holds error number */

#if 0 /* Set to 1 if reading algorithm files */
 /* Check pass parameters */
 if ((argc < 2) || (argc > 33)) { /* Must have 1 to 32 algorithms */
 usage(argv[0]);
 exit(1);
 }
#endif

 INST_STARTUP(); /* Initialize the C-SCPI routines */

#if 0 /* Set to 1 to open interface session */
 /* If you need to open a VXI device session, here’s how to do it. You need
 * a VXI device session if the V382 is to source or respond to VXI
 * backplane triggers (SICL ixtrig or ionintr calls).
 */
 if (! (vxi = iopen(“vxi”))) {

(void) fprintf(stderr, “SICL error: failed to open vxi interface.\n”);
(void) fprintf(stderr, “SICL error %d: %s\n”,

 igeterrno(), igeterrstr(igeterrno()));
exit(1);

 }
#endif

 /* Open the E1415 device session with error checking. Copy and modify
 * these lines if you need to open other instruments.
 */
 INST_OPEN(e1415, E1415_ADDR); /* Open the E1415 */
 if (! e1415) { /* Did it open? */

(void) fprintf(stderr, “Failed to open the E1415 at address %s\n”,
 E1415_ADDR);

(void) fprintf(stderr, “C-SCPI open error was %d\n”, cscpi_open_error);
(void) fprintf(stderr, “SICL error was %d: %s\n”,

 igeterrno(), igeterrstr(igeterrno()));
exit(1);

 }
 /* Check for startup errors */
 INST_QUERY(e1415,"syst:err?\n", “%d,%S”, &error, string);
 if (error) {
 (void) printf(“syst:err %d,%s\n”, error, string);
 exit(1);
 }

 /* Usually, you’ll want to start from a known instrument state. The
 * following provides this.
 */
 INST_CLEAR(e1415); /* Selected device clear */
 INST_SEND(e1415, “*RST;*CLS\n”);

#if 0 /* Set to 1 to do self test */
 /* Does the E1415 pass self-test? */
 {
 int test_result; /* Result of E1415 self-test */

test_result = -1; /* Make sure it gets assigned */
INST_QUERY(e1415, “*TST?\n”, “%d”, &test_result);
if (test_result) {

404 Example Program Listings Appendix G

 (void) fprintf(stderr, “E1415A failed self-test\n”);
 exit(1);
}

 }
#endif

 /* Setup SCP functions */
 INST_SEND(e1415, “sens:func:volt (@116)\n”); /* Analog in volts */
 INST_SEND(e1415, “sour:func:cond (@141)\n”); /* Digital output */

#if 0 /* Set to 1 to do calibration */
 /* Perform Calibrate, if necessary */
 {
 int cal_result; /* Result of E1415 self-test */

cal_result = -1; /* Make sure it gets assigned */
INST_QUERY(e1415, “*CAL?\n”, “%d”, &cal_result);
if (cal_result) {
 (void) fprintf(stderr, “E1415A failed calibration\n”);
 (void) fprintf(stderr, “Check FIFO for channel errors\n”);
 exit(1);
}

 }
#endif

 /* Configure Trigger Subsystem and Data Format */

 INST_SEND(e1415, “trig:sour timer;:trig:timer .001\n”);
 INST_SEND(e1415, “samp:timer 10e-6\n”); /* default */
 INST_SEND(e1415, “form real,32\n”);

 /* Download Globals */
 /* INST_SEND(e1415, “alg:def ‘globals’,’static float x;’\n”); */

 /* Download Custom Function */
 {
 float64 maxInput; /* set to maximum expected input*/
 float64 minInput; /* set to minimum expected input*/
 float64 tableOffset; /* offset used in building table*/
 uint16 coef_array[512]; /* 512 elements */
 float64 tableRange; /* Range on which table was built*/

 maxInput = 2;
 minInput = -2;
 Build_table(maxInput, minInput, my_function, &tableRange,
 &tableOffset, coef_array);

 /* Download the table range and the table array to the card */
 /* Piecewise requires 128 sets of table values */

 INST_SEND(e1415,"ALGorithm:FUNCtion:DEFine ‘sin’,%f,%f,%1024b",
 tableRange, tableOffset, coef_array);
 }

 /* Download algorithms */
#if 0 /* Set to 1 if algorithms passed in as files */
 /* Get an algorithm(s) from the passed filename(s). We assign sequential
 * algorithm numbers to each successive file name: ALG1, ALG2, etc. when
 * you execute this program as “<progname> lang1 lang2 lang3 ...”

Appendix G Example Program Listings 405

 */
 alg_num = 1; /* Starting algorithm number */
 while (argc > alg_num) {

 algorithm = get_algorithm(argv[alg_num]); /* Read the algorithm */

 /* Define the algorithm */
 {
 char alg[6]; /* Temporary algorithm name */
 (void) sprintf(alg, “ALG%d”, alg_num);
 INST_SEND(e1415, “alg:def %S,%*B\n”, alg,
 strlen(algorithm) + 1, algorithm);

 /* Check for algorithm errors */
 INST_QUERY(e1415,"syst:err?\n", “%d,%S”, &error, string);
 if (error) {
 (void) printf(“While loading file %s, syst:err %d,%s\n”,
 argv[alg_num], error, string);
 exit(1);
 }
 }

 /* Free the malloc’ed memory */
 free(algorithm);

 alg_num++; /* Next algorithm */
 }
 (void) printf(“All %d algorithm(s) loaded without errors\n\n”, alg_num-1);

#else /* Download algorithm with in-line code */
algorithm = “ \n”
“/* Example algorithm uses Custom Functions.\n”
“ * This algorithms generates a triangle and\n”
“ * sine wave signal to separate current outputs.\n”
“ */\n”
“\n”
“ static float inc = .1, x=0, gain=2*1.57;\n”
“ if (x > 1.57) inc = -inc;\n”
“ if (x < -1.57) inc = abs(inc);\n”
“ x = x + inc;\n”
“ O100 = x * (.001); \n”

 “ O101 = gain * sin(x) * (.001);\n”
“ \n”;

 INST_SEND(e1415, “alg:def ‘ALG1’,%*B\n”, strlen(algorithm) + 1,
algorithm);
#endif

 /* Preset Algorithm variables */

 /* Initiate Trigger System - start scanning and running algorithms */

 INST_SEND(e1415,"init\n");

 /* This example shows no data retrieval. */

#if 1 /* Set to 1 if using User interactive commands to E1415 */
 /* Call this function if you want to be able to type SCPI commands and
 * see their responses. NOTE: switch to FORM,ASC to retrieve
 * ASCII numbers during interactive mode.
 */
 INST_SEND(e1415,"form asc\n");
 do_interactive(); /* Calls cscpi_exe() in a loop */
#endif

406 Example Program Listings Appendix G

#if 0
 /* C-CSPI way to check for errors */
 INST_QUERY(e1415,"syst:err?\n", “%d,%S”, &error, string);
 if (error) {
 (void) printf(“syst:err %d,%s\n”, error, string);
 exit(1);
 }
#endif

 return 0; /* Normal end of program */
}

Appendix G Example Program Listings 407

Notes

408 Example Program Listings Appendix G

Index

!

(ALG_NUM), determining an algorithms identity, 117
(First_loop), determining first execution, 115
(FM), fixed width pulses at variable frequency, 71
(FM), variable frequency square-wave output, 71
(Important!), performing channel calibration, 72
(PWM), variable width pulses at fixed frequency, 70
*CAL?, how to use, 72
*RST, default settings, 55
4-20 mA, adding sense circuits for, 45

A

A common error to avoid, 119
A complete thermocouple measurement command
sequence, 66
A quick-start PID algorithm example, 89
A very simple first algorithm, 124
Abbreviated Commands, 154
ABORt subsystem, 160
abs(expression), 136
Access, bitfield, 138
Accessing I/O channels, 114
Accessing the VT1415A’s resources, 113
Accessories

Rack Mount Terminal Panel, 47
Accuracy

10k ohm Thermistor, 322, 323
2250 ohm Thermistor, 318, 319
5k ohm Thermistor, 320, 321
dc volts, 296
E Type Thermocouple, 298, 299, 300, 301
E Type Thermocouple (extended), 302, 303
J Type Thermocouple, 304, 305
K Type Thermocouple, 306
R Type Thermocouple, 307, 308
Reference RTD, 315
Reference Thermistor, 313, 314
RTD, 316, 317
S Type Thermocouple, 309, 310
Sample timer, 295
T Type Thermocouple, 311, 312
Temperature, 297

Adding settling delay for specific channels, 108
Adding terminal module components, 45
Additive-expression:, 140
Additive-operator:, 140
ADDRess

MEM:VME:ADDR, 210
ADDRess?

MEM:VME:ADDR?, 210
Alarm limits, 75
ALG:DEFINE in the programming sequence, 121
ALG:DEFINE, defining a PID with, 76
ALG:DEFINE’s three data formats, 121
ALGorithm :EXPLicit :STATe , 170, 171
ALGorithm :EXPLicit :ARRay, 162
ALGorithm :EXPLicit :ARRay?, 163
ALGorithm :EXPLicit :DEFine, 163
ALGorithm :EXPLicit :SCALar, 167
ALGorithm :EXPLicit :SCALar?, 168
ALGorithm :EXPLicit :SCAN:RATio, 168
ALGorithm :EXPLicit :SCAN:RATio?, 169
ALGorithm :EXPLicit :SIZe?, 169
ALGorithm :EXPLicit :TIMe?, 171
Algorithm execution order, 119
Algorithm Language reference, 133
Algorithm language statement

writecvt(), 116
writefifo(), 117

Algorithm to algorithm communication, 126
Algorithm, A very simple first, 124
Algorithm, data acquisition, 129
Algorithm, exiting the, 136
Algorithm, modifying a standard PID, 125
Algorithm, process monitoring, 129
Algorithm, running the, 125
Algorithm, starting the PID, 81
Algorithm, the pre-defined PIDA, 73
Algorithm, the pre-defined PIDB, 74
Algorithm, What is a custom ?, 110
Algorithm, writing the, 125
ALGorithm:FUNCtion:DEFine, 172
ALGorithm:OUTPut:DELay, 173
ALGorithm:OUTPut:DELay?, 174
ALGorithm:UPDate :IMMediate , 174
ALGorithm:UPDate:CHANnel, 175
ALGorithm:UPDate:WINDow, 176
ALGorithm:UPDate:WINDow?, 177
Algorithm-definition:, 142
Algorithms

disabling, 87
enabling, 87

Algorithms, defining custom, 121
Algorithms, defining standard PID, 73

Index 409

Algorithms, INITiating/Running, 81
Algorithms, non-control, 129
ALL?

DATA:FIFO:ALL?, 229
AMPLitude

OUTP:CURRent:AMPLitude, 213
OUTPut:CURRent:AMPLitude?, 214

An example using the operation group, 95
APERture

SENSe:FREQuency:APERture, 234
APERture?

SENSe:FREQuency:APERture?, 234
Arithmetic operators, 135
Arm and trigger sources, 78
ARM subsystem, 178, 179
ARM:SOURce, 179
ARM:SOURce?, 180
ARRay

ALGorithm :EXPLicit :ARRay, 162
ARRay?

ALGorithm :EXPlicit :EXPLicit:ARRay?, 163
Assigning values, 143
Assignment operator, 135
Attaching and removing the terminal module, 43
Attaching the terminal module, 41
Attaching the VT1415A terminal module, 43
Autoranging, more on, 106
Available Power for SCPs, 295

B

Bitfield access, 138
Bit-number:, 140
BLOCK), continuously reading the FIFO (FIFO mode, 85
Byte, enabling events to be reported in the status, 94
Byte, reading the status, 96

C

CAL:CONF:RES, 182
CAL:CONF:VOLT, 183
CAL:SETup, 184
CAL:SETup?, 184
CAL:STORe, 185
CAL:TARE, 186
CAL:TARE and thermocouples, 102
CAL:TARE, resetting, 103
CAL:TARE:RESet, 187
CAL:TARE?, 188
CAL:VAL:RESistance, 188
CAL:VAL:VOLTage, 189
CAL:ZERO?, 190
CALibration subsystem, 181, 182, 184, 185, 186, 187,
188, 189, 190

Calibration, channel
*CAL?, 276

Calibration, control of, 23
Calling user defined functions, 118
Capability, maximum tare, 104
CAUTIONS

Loss of process control by algorithm, 160, 170, 271
Safe handling procedures, 19

Certification, iii
Changing an algorithm while it’s running, 122
Changing gains, 104
Changing gains or filters, 104
Changing timer interval while scanning, 274
CHANnel

ALGorithm:UPDate:CHANnel, 175
Channel calibration

 *CAL?, 276
Channel identifiers, communication using, 126
Channels

defined input, 114
output, 58, 68, 114
setting up analog input, 58
setting up digital input, 68

CHANnels
SENSe:REFerence:CHANnels, 246

Channels, accessing I/O, 114
Channels, adding settling delay for specific, 108
Channels, input, 114
Channels, output, 114
Channels, special identifiers for, 135
Characteristics, settling, 106
Checking for problems, 107
CHECksum?

DIAG:CHECK?, 193
Clearing event registers, 97
Clearing the enable registers, 97
Clipping limits, 74
Coefficients, 87
Command

Abbreviated, 154
Implied, 154
Linking, 157
Separator, 154

Command Quick Reference, 286, 288, 289, 290, 291, 292,
293
Command Reference, Common

*CAL?, 276
*CLS, 277
*DMC, 277
*EMC, 277
*EMC?, 277
*ESE, 277
*ESE?, 278
*ESR?, 278
*GMC?, 278
*IDN?, 278
*LMC?, 279

410 Index

*OPC, 279
*OPC?, 279
*PMC, 279
*RMC, 279
*RST, 280
*SRE, 281
*SRE?, 281
*STB?, 281
*TRG, 281
*TST?, 281
*WAI, 285

Command Reference, SCPI, 159
ABORt subsystem, 160
ALGorithm :EXPLicit :STATe , 170, 171
ALGorithm :EXPLicit :ARRay, 162
ALGorithm :EXPLicit :ARRay?, 163
ALGorithm :EXPLicit :DEFine, 163
ALGorithm :EXPLicit :SCALar, 167
ALGorithm :EXPLicit :SCALar?, 168
ALGorithm :EXPLicit :SCAN:RATio?, 169
ALGorithm :EXPLicit :SIZe?, 169
ALGorithm :EXPLicit :TIMe?, 171
ALGorithm :EXPLicit SCAN:RATio, 168
ALGorithm:FUNCtion:DEFine, 172
ALGorithm:OUTPut:DELay, 173
ALGorithm:OUTPut:DELay?, 174
ALGorithm:UPDate :IMMediate , 174
ALGorithm:UPDate:CHANnel, 175
ALGorithm:UPDate:WINDow, 176
ALGorithm:UPDate:WINDow?, 177
ARM subsystem, 178, 179
ARM:IMMediate, 179
ARM:SOURce, 179
ARM:SOURce?, 180
CALibration subsystem, 181, 182, 184, 185, 186, 187,
188, 189, 190
CALibration:CONFigure:RESistance, 182
CALibration:CONFigure:VOLTage, 183
CALibration:SETup, 184
CALibration:SETup?, 184
CALibration:STORe, 185
CALibration:TARE, 186
CALibration:TARE:RESet, 187
CALibration:TARE?, 188
CALibration:VALue:RESistance, 188
CALibration:VALue:VOLTage, 189
CALibration:ZERO?, 190
DIAGnostic subsystem, 191, 192, 193, 195, 196, 197,
198
DIAGnostic:CALibration:SETup :MODE , 191
DIAGnostic:CALibration:SETup :MODE ?, 192
DIAGnostic:CALibration:TARe:MODE, 192
DIAGnostic:CALibration:TARe:MODE?, 193
DIAGnostic:CHECksum?, 193
DIAGnostic:CUSTom:LINear, 193
DIAGnostic:CUSTom:PIECewise, 194
DIAGnostic:CUSTom:REFerence:TEMPerature, 195
DIAGnostic:IEEE, 195
DIAGnostic:IEEE?, 196
DIAGnostic:INTerrupt:LINe, 196
DIAGnostic:INTerrupt:LINe?, 196
FORMat subsystem, 199, 200, 201
FORMat:DATA, 199

FORMat:DATA?, 201
INITiate subsystem, 202
INITiate:IMMediate, 202
INPut subsystem, 203, 205, 207, 208
INPut:FILTer:LPASs:FREQuency?, 204
INPut:FILTer:LPASs:STATe, 204
INPut:FILTer:LPASs:STATe?, 205
INPut:GAIN, 205
INPut:GAIN?, 206
INPut:LOW, 206
INPut:LOW?, 207
INPut:LPASs:FILTer:FREQuency, 203
INPut:POLarity, 207
INPut:POLarity?, 208
MEMory subsystem, 209, 211, 212
MEMory:VME:ADDRess, 210
MEMory:VME:ADDRess?, 210
MEMory:VME:SIZE, 210
MEMory:VME:SIZE?, 211
MEMory:VME:STATe, 211
MEMory:VME:STATe?, 212
OUTPut subsystem, 213, 214, 215, 217, 218, 219, 221
OUTPut:CURRent:AMPLitude, 213
OUTPut:CURRent:AMPLitude?, 214
OUTPut:CURRent:STATe, 215
OUTPut:CURRent:STATe?, 215
OUTPut:POLarity, 216
OUTPut:POLarity?, 216
OUTPut:SHUNt, 216
OUTPut:SHUNt?, 217
OUTPut:TTLTrg:SOURce, 217
OUTPut:TTLTrg:SOURce?, 218
OUTPut:TTLTrg<n>:STATe, 218
OUTPut:TTLTrg<n>:STATe?, 219
OUTPut:TYPE, 219
OUTPut:TYPE?, 220
OUTPut:VOLTage:AMPLitude, 220
OUTPut:VOLTage:AMPLitude?, 221
ROUTe subsystem, 222, 223
ROUTe:SEQuence:DEFine?, 222
ROUTe:SEQuence:POINts?, 223
SAMPle subsystem, 224, 225
SAMPle:TIMer, 224
SAMPle:TIMer?, 225
SENSe subsystem, 226, 227, 228, 230, 232, 234, 235,
236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246,
247, 248, 249, 250, 251, 252
SENSe:CHANnel:SETTling, 227
SENSe:CHANnel:SETTling?, 227
SENSe:DATA:COUN:HALF?, 231
SENSe:DATA:CVTable:RESet, 229
SENSe:DATA:CVTable?, 228
SENSe:DATA:FIFO:ALL?, 229
SENSe:DATA:FIFO:COUNt?, 230
SENSe:DATA:FIFO:HALF?, 231
SENSe:DATA:FIFO:MODE, 232
SENSe:DATA:FIFO:MODE?, 233
SENSe:DATA:FIFO:PART?, 233
SENSe:DATA:FIFO:RESet, 234
SENSe:FREQuency:APERture, 234
SENSe:FREQuency:APERture?, 234
SENSe:FUNC:CONDition, 235
SENSe:FUNCtion:CUSTom, 235

Index 411

SENSe:FUNCtion:CUSTom:REFerence, 236
SENSe:FUNCtion:CUSTom:TCouple, 237
SENSe:FUNCtion:FREQuency, 238
SENSe:FUNCtion:RESistance, 239
SENSe:FUNCtion:STRain:FBEN, 240
SENSe:FUNCtion:STRain:FBP, 240
SENSe:FUNCtion:STRain:FPO, 240
SENSe:FUNCtion:STRain:HBEN, 240
SENSe:FUNCtion:STRain:QUAR, 240
SENSe:FUNCtion:STRainHPO:, 240
SENSe:FUNCtion:TEMPerature, 241
SENSe:FUNCtion:TOTalize, 243
SENSe:FUNCtion:VOLTage, 243
SENSe:REFerence, 244
SENSe:REFerence:CHANnels, 246
SENSe:REFerence:TEMPerature, 246
SENSe:STRain:EXCitation, 247
SENSe:STRain:EXCitation?, 247
SENSe:STRain:GFACtor, 248
SENSe:STRain:GFACtor?, 248
SENSe:STRain:POISson, 249
SENSe:STRain:POISson?, 249
SENSe:STRain:UNSTrained, 249
SENSe:STRain:UNSTrained?, 250
SENSe:TOTalize:RESet:MODE, 250
SENSe:TOTalize:RESet:MODE?, 252
SOURce subsystem, 253, 254, 255, 256, 257
SOURce:FM:STATe, 253
SOURce:FM:STATe?, 254
SOURce:FUNC :SHAPe , 255
SOURce:FUNC :SHAPe :CONDition, 254
SOURce:FUNC :SHAPe :PULSe, 254
SOURce:PULM:STATe, 255
SOURce:PULM:STATe?, 255
SOURce:PULSe:PERiod, 256
SOURce:PULSe:PERiod?, 256
SOURce:PULSe:WIDTh, 257
SOURce:PULSe:WIDTh?, 257
STATus subsystem, 258, 259, 260, 262, 263, 264,
265, 266, 268
STATus:OPERation:CONDition?, 260
STATus:OPERation:ENABle, 261
STATus:OPERation:ENABle?, 261
STATus:OPERation:EVENt?, 262
STATus:OPERation:NTRansition, 262
STATus:OPERation:NTRansition?, 263
STATus:OPERation:PTRansition, 263
STATus:OPERation:PTRansition?, 264
STATus:PRESet, 264
STATus:QUEStionable:CONDition?, 265
STATus:QUEStionable:ENABle, 265
STATus:QUEStionable:ENABle?, 266
STATus:QUEStionable:EVENt?, 266
STATus:QUEStionable:NTRansition, 267
STATus:QUEStionable:NTRansition?, 267
STATus:QUEStionable:PTRansition, 268
STATus:QUEStionable:PTRansition?, 268
SYSTem subsystem, 269, 270
SYSTem:CTYPe?, 269
SYSTem:ERRor?, 269
SYSTem:VERSion?, 270
TRIGger subsystem, 271, 272, 273, 274, 275
TRIGger:COUNt, 273

TRIGger:COUNt?, 273
TRIGger:IMMediate, 273
TRIGger:SOURce, 274
TRIGger:SOURce?, 275
TRIGger:TIMer, 275
TRIGger:TIMer?, 275

Command sequences, defined, 25
Commands, FIFO status, 85
Commands, FIFO transfer, 84
Comment lines, 146
Comments:, 143
Common Command Format, 153
Common mode noise, 354
Common mode rejection, 296
Common mode voltage

Maximum, 296
Common mode voltage limits, 353
Communication using channel identifiers, 126
Communication using global variables, 127
Communication, algorithm to algorithm, 126
Comparison operators, 135
Compensating for system offsets, 102
Compensation, thermocouple reference temperature, 64
Components, adding terminal module, 45
Compound-statement:, 142
CONDition

SENSe:FUNC:CONDition, 235
SOURce:FUNC :SHAPe , 254
STAT:OPER:CONDition?, 260

CONDition?
STAT:QUES:CONDition?, 265

Conditional constructs, 136
Conditional execution, 144
Configuring programmable analog SCP parameters, 58
Configuring the enable registers, 95
Configuring the transition filters, 94
Configuring the VT1415A, 17
Connecting the on-board thermistor, 40
Connection

recommended, 37
signals to channels, 37

Connections
Guard, 353

Considerations, special, 104
Constant:, decimal, 139
Constant:, hexadecimal, 139
Constant:, octal, 139
Constructs, conditional, 136
Continuous Mode, 274
Continuously reading the FIFO (FIFO mode BLOCK), 85
Control, implementing feed forward, 127
Control, implementing multivariable, 126
Control, manual, 75
Control, PIDA with digital on-off, 125
Control, program flow, 136

412 Index

Controller, describing the VT1415A closed loop, 110
Controller, overview of the VT1415A algorithmic loop, 52
Conversion, EU, 334
Conversion, linking channels to EU, 60
Conversions, custom EU, 67
Conversions, custom reference temperature EU, 100
Conversions, custom thermocouple EU, 100
Conversions, loading tables for linear, 101
Conversions, loading tables for non linear, 101
COUNt?

SENS:DATA:FIFO:COUNt?, 230
Counter, setting the trigger, 81
Creating and loading custom EU conversion tables, 99
Creating conversion tables, 101
CTYPe?

SYST:CTYPe?, 269
Current Value Table

SENSe:DATA:CVTable?, 228
CUSTom

SENS:FUNC:CUSTom, 235
Custom Algorithm, what is a ?, 110
Custom EU conversion tables

creating, 99
loading, 99

Custom EU conversions, 67
Custom EU operation, 100
Custom EU tables, 100
Custom reference temperature EU conversions, 100
Custom thermocouple EU conversions, 100
CVT

Resetting the CVT, 84
SENSe:DATA:CVTable?, 228

CVT elements, reading, 116
CVT elements, writing value to, 116
CVT, organization of the, 83
CVT, reading algorithm values from the, 83
CVT, sending data to, 116

D

DATA
FORMat:DATA, 199
FORMat:DATA?, 201

Data acquisition algorithm, 129
Data structures, 137
Data types, 136
DATA:FIFO:ALL?, 229
Decimal constant:, 139
Declaration initialization, 139
Declaration:, 141
Declarations:, 142
Declarator:, 141
Declaring variables, 143
Default settings, power-on, 55

DEFine
ALGorithm :EXPLicit :DEFine, 163
ALGorithm:FUNCtion:DEFine, 172
ROUT:SEQ:DEF?, 222

Defined input and output channels, 114
Defining a PID with ALG:DEFINE, 76
Defining an algorithm for swapping, 122
Defining and accessing global variables, 115
Defining custom algorithms, 121
Defining data storage, 77
Defining standard PID algorithms, 73
Definite length block data example, 122
DELay

ALGorithm:OUTPut:DELay, 173
DELay?

ALGorithm:OUTPut, 174
Describing the VT1415A closed loop controller, 110
Detecting open transducers, 104
Determining an algorithm’s size, 123
Determining an algorithms identity (ALG_NUM), 117
Determining first execution (First_loop), 115
Determining model

SCPI programming, 278
DIAG:CHECK?, 193
DIAG:CUST:REF:TEMP, 195
DIAG:INT:LINe, 196
DIAG:INT:LINe?, 196
DIAGnostic

DIAGnostic:CALibration:SETup :MODE , 191
DIAGnostic:CALibration:SETup :MODe ?, 192
DIAGnostic:CALibration:TARe:MODE, 192
DIAGnostic:CALibration:TARe:MODE?, 193
DIAGnostic:CUSTom:LINear, 193
DIAGnostic:CUSTom:PIECewise, 194
DIAGnostic:IEEE, 195
DIAGnostic:IEEE?, 196

DIAGnostic:CALibration:SETup :MODE ?, 192
DIAGnostic:CALibration:SETup: MODE , 191
DIAGnostic:CALibration:TARe:MODE, 192
DIAGnostic:CALibration:TARe:MODE?, 193
DIAGnostic:CUSTom:LINear, 193
DIAGnostic:CUSTom:PIECewise, 194
DIAGnostic:IEEE, 195
DIAGnostic:IEEE?, 196
DIAGnostic:OTDetect, 105
Directly, reading status groups, 97
Disabling flash memory access (optional), 23
Disabling the input protect feature (optional), 23
Does, what *CAL?, 72
Drivers, 25
DSP, 334

E

ENABle

Index 413

STAT:OPER:ENABle, 261
STAT:QUES:ENABle, 265

ENABle?
STAT:OPER:ENABle?, 261
STAT:QUES:ENABle?, 266

Enabling and disabling algorithms, 87
Enabling events to be reported in the status byte, 94
Environment, the algorithm execution, 111
Equality-expression:, 141
Equality-operator:, 141
Error Messages, 325, 326, 327, 328, 329, 330, 331, 332

Self Test, 327
ERRor?

SYST:ERRor?, 269
EU, 334
EU Conversion, 334
EVENt?

STAT:OPER:EVENt?, 262
STAT:QUES:EVENt?, 266

Example command sequence, 88
Example language usage, 111
Example programs, about, 25
Example, A quick-start PID algorithm, 89
Example, definite length block data, 122
Example, indefinite length block data, 122
Examples, operation status group, 95
Examples, questionable data group, 95
Examples, standard event group, 96
EXCitation

SENSe:STRain:EXCitation, 247
SENSe:STRain:EXCitation?, 247

Executing the programming model, 55
Execution, conditional, 144
Exiting the algorithm, 136
Expression:, 141
Expression-statement:, 142

F

Faceplate connector pin-signal lists, 49
FIFO status commands, 85
FIFO transfer commands, 84
FIFO, reading history mode values from the, 84
FIFO, reading values from the, 84, 117
FIFO, sending data to, 116
FIFO, time relationship of readings in, 117
FIFO, writing values to, 117
Filters, 104
Filters, adding circuits to terminal module, 45
Filters, configuring the transition, 94
Fixed width pulses at variable frequency (FM), 71
Fixing the problem, 107
Flash Memory, 334
Flash memory access, disabling, 23

Flash memory limited lifetime, 185
FM:STATe

SOURce:FM:STATe, 253
FM:STATe?

SOURce:FM:STATe?, 254
Format

Common Command, 153
SCPI Command, 154

Format, specifying the data, 77
FORMat:DATA, 199
FORMat:DATA?, 201
Formats, ALG:DEFINE’s three data, 121
FREQuency

INPut:FILT:FREQ, 203
SENSe:FUNCtion:FREQuency, 238

Frequency function, 68
Frequency, setting algorithm execution, 88
Frequency, setting filter cutoff, 58
FREQuency?

INP:FILT:FREQ?, 204
Function, frequency, 68
Function, setting input, 68
Function, static state (CONDition), 68, 70
Function, the main, 112
Function, totalizer, 69
Functions and statements, intrinsic

abs(expression), 135
interrupt(), 117, 135
max(expression1,expression2), 135
min(expression1,expression2), 135
writeboth(expression,cvt_element), 135
writecvt(expression,cvt_element), 116, 135
writefifo(expression), 117, 135

Functions, calling user defined, 118
Functions, linking output channels to, 67
Functions, setting output, 70
Functions:, 136

G

Gain
channel, 276

GAIN
INPut:GAIN, 205

GAIN?
INP:GAIN?, 206

Gains, setting SCP, 58
GFACtor

SENSe:STRain:GFACtor, 248
SENSe:STRain:GFACtor?, 248

Global variables, 139
accessing, 115
defining, 115

Glossary, 333, 334, 335, 336
Grounding

Noise due to inadequate, 353

414 Index

Group, an example using the operation, 95
Guard connections, 353

H

HALF?
SENS:DATA:FIFO:COUNt:HALF?, 231
SENS:DATA:FIFO:HALF?, 231

Hexadecimal constant:, 139
HINTS

for quiet measurements, 37
Read chapter 3 before chapter 4, 109

History mode, 75
How to use *CAL?, 72

I

Identifier:, 139
Identifiers, 134
IEEE +/- INF, 200
IMMediate

ALGorithm:UPDate, 174
ARM:IMMediate, 179
INIT:IMM, 202
TRIG:IMMediate, 273

Impedance, input, 296
Implementing feed forward control, 127
Implementing multivariable control, 126
Implementing setpoint profiles, 130
Implied Commands, 154
IMPORTANT!

Do use CAL:TARE for copper TC wiring, 102
Don’t use CAL:TARE for thermocouple wiring, 102
Making low-noise measurements, 32
Resolving programming problems, 55

Indefinite length block data example, 122
INF, IEEE, 200
INIT:IMM, 202
Init-declarator:, 141
Init-declarator-list:, 141
Initialization, declaration, 139
Initializing variables, 116
INITiate subsystem, 202
INITiating/Running algorithms, 81
INP:FILT:FREQ?, 204
INP:FILT:LPAS:STAT, 204
INP:FILT:LPAS:STAT?, 205
INP:GAIN?, 206
Input channels, 114
Input impedance, 296
Input protect feature, disabling, 23
INPut subsystem, 203, 205, 207, 208
Input voltage, maximum, 296
INPut:FILT:FREQ, 203
INPut:GAIN, 205

INPut:LOW, 206
INPut:LOW?, 207
INPut:POLarity, 207
INPut:POLarity?, 208
Inputs, setting up digital, 68
Instrument drivers, 25
Interrupt function, 117
Interrupt level, setting NOTE, 17
interrupt(), 117, 136
Interrupts

updating the status system, 98
VXI, 98

Intrinsic functions and statements
abs(expression), 135
interrupt(), 135
max(expression1,expression2), 135
min(expression1,expression2), 135
writeboth(expression,cvt_element), 135
writecvt(expression,cvt_element), 116, 135
writefifo(expression), 117, 135

Intrinsic Functions and Statements
interrupt(), 117

Intrinsic-statement:, 142
Isothermal reference measurement, NOTE, 32

K

Keywords, special VT1415A reserved, 134
Keywords, standard reserved, 134

L

Language syntax summary, 139
Language, overview of the algorithm, 110
Layout

Terminal Module, 33
Lifetime limitation, Flash memory, 185
Limits

Common mode voltage, 353
Limits, alarm, 75
Limits, clipping, 74
LINe

DIAG:INT:LINe, 196
LINe?

DIAG:INT:LINe?, 196
Lines, comment, 146
Linking channels to EU conversion, 60
Linking Commands, 157
Linking output channels to functions, 67
Linking resistance measurements, 61
Linking strain measurements, 66
Linking temperature measurements, 63
Linking voltage measurements, 61
Lists

Faceplate connector pin-signal , 49

Index 415

Loading custom EU tables, 101
Loading tables for linear conversions, 101
Loading tables for non linear conversions, 101
Logical operators, 135
Logical-AND-expression:, 141
LOW

INPut:LOW, 206
INPut:LOW?, 207

Low-noise measurements, HINTS, 37
Low-noise measurements, IMPORTANT!, 32

M

Manual control, 75
max(expression1,expression2), 136
Maximum

Common mode voltage, 296
Input voltage, 296
Tare cal offset, 296
Update rate, 295

Maximum tare capability, 104
Measurement

accuracy dc volts, 296
Ranges, 295
Resolution, 295

Measurements
terminal block considerations for TC, 36

Measurements, linking resistance, 61
Measurements, linking strain, 66
Measurements, linking temperature, 63
Measurements, linking voltage, 61
Measurements, reference measurement before
thermocouple, 65
Measurements, thermocouple, 64
Measuring the reference temperature, 65
MEM:VME:ADDR, 210
MEM:VME:ADDR?, 210
MEM:VME:SIZE, 210
MEM:VME:SIZE?, 211
MEM:VME:STATe, 211
MEM:VME:STATe?, 212
Messages, error, 325, 326, 327, 328, 329, 330, 331, 332
min(expression1,expression2), 136
MODE

SENS:DATA:FIFO:MODE, 232
SENSe:TOTalize:RESet:MODE, 250

Mode, history, 75
Mode, selecting the FIFO, 78
MODE?

SENS:DATA:FIFO:MODE?, 233
SENSe:TOTalize:RESet:MODE?, 252

Mode?, which FIFO, 85
Model, determining

SCPI programming, 278
Model, executing the programming, 55

Model, programming, 53
Modifier, the static, 137
Modifying a standard PID algorithm, 125
Modifying running algorithm variables, 87
Modifying the standard PIDA, 126
Modifying the terminal module circuit, 45
Module

SCPs and Terminal, 33
Modules

Terminal, 33
More on auto ranging, 106
Multiplicative-expression:, 140
Multiplicative-operator:, 140

N

NaN, 200
Next, where to go, 147
Noise

Common mode, 354
Normal mode, 354

Noise due to inadequate grounding, 353
Noise reduction with amplifier SCPs, NOTE, 108
Noise reduction, wiring techniques, 352
Noise Rejection, 354
Noisy measurements

Quieting, 32, 37
Non-Control algorithms, 129
Normal mode noise, 354
Not-a-Number, 200
NOTES

*RST effect on custom EU tables, 100
*TST? sets default ASC,7 data format, 200
+ & - overvoltage return format from FIFO, 230, 231,
233
ALG:SCAN:RATIO vs. ALG:UPD, 168
ALG:SIZE? return for undefined algorithm, 169
ALG:STATE effective after ALG:UPDATE, 87
ALG:STATE effective only after ALG:UPD, 170
ALG:TIME? return for undefined algorithm, 171
Algorithm Language case sensitivity, 134
Algorithm Language reserved keywords, 134
Algorithm source string terminated with null, 122
Algorithm source string terminates with null, 165
Algorithm swapping limitations, 166
Algorithm Swapping restrictions, 124
Algorithm variable declaration and assignment, 115
Amplifier SCPs can reduce measurement noise, 108
BASIC’s vs. ‘C’s “is equal to” symbol, 143
Bitfield access ‘C’ vs. Algorithm Language, 138
Cannot declare channel ID as variable, 135
Combining SCPI commands, 158
CVT contents after *RST, 84, 229
Decimal constants can be floating or integer, 139
Default (*RST) Engineering Conversion, 60
Define user function before algorithm calls , 118
Do not CAL:TARE thermocouple wiring, 186
Do use CAL:TARE for copper in TC wiring, 102

416 Index

Do use CAL:TARE for copper TC wiring, 186
Don’t use CAL:TARE for thermocouple wiring, 102
Flash memory limited lifetime, 103, 185
Isothermal reference measurements, 32
MEM subsystem vs. command module model, 209
MEM subsystem vs. TRIG and INIT sequence, 209
MEM system vs TRIG and INIT sequence, 198
Memory required by an algorithm, 123
Number of updates vs. ALG:UPD:WINDOW, 162,
167, 177
Open transducer detect restrictions, 105
OUTP:CURR:AMPL command, 60
OUTP:CURR:AMPL for resistance measurements,
213
OUTP:VOLT:AMPL command, 60
PID definition errors and channel specifiers, 76
Reference to noise reduction literature, 353
Resistance temperature measurements, 63
Saving time when doing channel calibration, 73
Selecting manual range vs. SCP gains, 61
Setting the interrupt level, 17
Settings conflict, ARM:SOUR vs TRIG:SOUR, 178,
274
Thermocouple reference temperature usage, 244, 246
TRIGger:SOURce vs. ARM:SOURce, 79, 80
Warmup before executing *TST?, 328
When algorithm variables are initialized, 139

NTRansition
STAT:OPER:NTRansition, 262
STAT:QUES:NTRansition, 267

NTRansition?
STAT:OPER:NTRansition?, 263
STAT:QUES:NTRansition?, 267

O

Octal constant:, 139
Offset

A/D, 184, 276
channel, 184, 276

Offsets, compensating for system, 102
Offsets, residual sensor, 103
Offsets, system wiring, 102
Operating sequence, 118
Operation, 72, 103
Operation and restrictions, 72
Operation status group examples, 95
Operation, custom EU, 100
Operation, standard EU, 99
Operation, VT1415A background, 98
Operational overview, 52
Operator, assignment, 135
Operator, unary arithmetic, 144
Operator, unary logical, 135
Operators, 135
Operators, arithmetic, 135
Operators, comparison, 135
Operators, logical, 135

Operators, the arithmetic, 144
Operators, the comparison, 144
Operators, the logical, 144
Operators, unary, 135
Option A3F, 47
Options

Terminal module, 47
Order, algorithm execution, 119
Organization of the CVT, 83
OTD restrictions, NOTE, 105
OTDetect, DIAGnostic:OTDetect, 105
OUTP:CURRent:AMPLitude, 213
OUTP:CURRent:AMPLitude?, 214
OUTP:SHUNt, 216
OUTP:SHUNt?, 217
OUTP:TTLT<n>:STATe, 218
OUTP:TTLT<n>:STATe?, 219
Output channels, 114
OUTPut subsystem, 213, 214, 215, 217, 218, 219, 221
OUTPut:CURRent:STATe, 215
OUTPut:CURRent:STATe?, 215
OUTPut:POLarity, 216
OUTPut:POLarity?, 216
OUTPut:TTLTrg:SOURce, 217
OUTPut:TTLTrg:SOURce?, 218
OUTPut:TYPE, 219
OUTPut:TYPE?, 220
OUTPut:VOLTage:AMPLitude, 220
OUTPut:VOLTage:AMPLitude?, 221
Outputs, setting up digital, 69
Outputting trigger signals, 81
OVER), reading the latest FIFO values (FIFO mode, 86
Overall program structure, 146
Overloads, unexpected channel, 104
Overview of the algorithm language, 110
Overview of the VT1415A algorithmic loop controller, 52
Overview, operational, 52

P

Parameter data and returned value types, 158
Parameters, configuring programmable analog SCP, 58
PART?

SENS:DATA:FIFO:PART?, 233
Performing channel calibration (Important!), 72
PERiod

SOURce:PULSe:PERiod, 256
PERiod?

SOURce:PULSe:PERiod?, 256
PID algorithm tuning, 91
PIDA with digital on-off control, 125
PIDA, modifying the standard, 126
Planning

Index 417

grouping channels to signal conditioning, 29
planning wiring layout, 29
sense vs. output SCPs, 31
thermocouple wiring, 32

Points
ROUT:SEQ:POINts?, 223

POISson
SENSe:STRain:POISson, 249
SENSe:STRain:POISson?, 249

POLarity
INPut:POLarity, 207
OUTPut:POLarity, 216

Polarity, setting input, 68
Polarity, setting output, 69
POLarity?

INPut:POLarity?, 208
OUTPut:POLarity?, 216

Power Available for SCPs, 295
Power-on and *RST default settings, 55
PRESet

STAT:PRESet, 264
Pre-setting PID variables , 77
Pre-setting PID variables and coefficients, 77
Primary-expression:, 140
Problem, fixing the, 107
Problems, checking for, 107
Problems, resolving programming, 55
Process monitoring algorithm, 129
Profiles, implementing setpoint, 130
Program flow control, 136
Program structure and syntax, 143
Programming model, 53
Programming the trigger timer, 80
PTRansition

STAT:OPER:PTRansition, 263
STAT:QUES:PTRansition, 268

PTRansition?
STAT:OPER:PTRansition?, 264
STAT:QUES:PTRansition?, 268

PULSe
SOURce:FUNC :SHAPe , 254

Q

Questionable data group examples, 95
Quick Reference, Command, 286, 288, 289, 290, 291, 292,
293
Quiet measurements, HINTS, 37
Quieter readings with amplifier SCPs, NOTE, 108

R

Rack Mount Terminal Panel Accessories, 47
Ranges, measurement, 295
RATio

ALGorithm :EXPLicit :SCAN:RATio, 168

RATio?
ALGorithm :EXPLicit :SCAN:RATio?, 169

Reading algorithm values from the CVT, 83
Reading algorithm variables, 83
Reading condition registers, 97
Reading CVT elements, 116
Reading event registers, 97
Reading history mode values from the FIFO, 84
Reading running algorithm values, 83
Reading status groups directly, 97
Reading the latest FIFO values (FIFO mode OVER), 86
Reading the status byte, 96
Reading values from the FIFO, 84, 117
Recommended measurement connections, 37
Re-Execute *CAL? when:, 73
REFerence

SENS:FUNC:CUST:REF, 236
SENS:REFerence, 244

Reference junction, 40
Reference measurement before thermocouple
measurements, 65
Reference temperature measurement, NOTE, 32
Reference temperature sensing, 35
Reference temperature sensing with the VT1415A, 35
Reference, Algorithm language, 133
Register, the status byte group’s enable, 97
Registers, clearing event, 97
Registers, clearing the enable, 97
Registers, configuring the enable, 95
Registers, reading condition, 97
Registers, reading event, 97
Rejection

Noise, 354
Rejection, common mode, 296
Relational-expression:, 140
Relational-operator:, 141
Removing the VT1415A terminal module, 43
Reset

*RST, 280
Resetting the CVT, 84

RESet
SENS:DATA:CVT:RESet, 229
SENS:DATA:FIFO:RESet, 234

Resetting CAL:TARE, 103
Residual sensor offsets, 103
Resistance

CAL:VAL:RESistance, 188
RESistance

CAL:CONF:RES, 182
SENS:FUNC:RESistance, 239

Resolution, measurement, 295
Resources, accessing the VT1415A’s, 113
Restrictions, 72
ROUT:SEQ:DEF?, 222

418 Index

ROUT:SEQ:POINts?, 223
ROUTe subsystem, 222, 223
RTD and thermistor measurements, 63
Running the algorithm, 125
Running, changing an algorithm while it’s, 122

S

Safe Handling, static discharge CAUTION, 19
SAMP:TIMer, 224
SAMP:TIMer?, 225
SAMPle subsystem, 224, 225
sample timer, accuracy, 295
SCALar

ALGorithm :EXPLicit :SCALar, 167
SCALar?

ALGorithm :EXPLicit :SCALar?, 168
SCP, 334

grouping channels to signal conditioning, 29
sense vs. output SCPs, 31

SCP, Power Available, 295
SCP, setting the HP E1505 current source, 59
SCPI commands

DIAGnostic:OTDetect, 105
SCPI Commands, 149

Format, 154
SCPs and Terminal Module, 33
Selecting the FIFO mode, 78
Selecting the trigger source, 79
Selecting trigger timer arm source, 80
Selection-statement:, 142
Self test

and C-SCPI for MS-DOS (R), 282
how to read results, 282

Self Test, error messages, 327
Sending Data to the CVT and FIFO, 116
SENS:DATA:CVT:RESet, 229
SENS:DATA:FIFO:COUNt:HALF?, 231
SENS:DATA:FIFO:COUNt?, 230
SENS:DATA:FIFO:HALF?, 231
SENS:DATA:FIFO:MODE, 232
SENS:DATA:FIFO:MODE?, 233
SENS:DATA:FIFO:PART?, 233
SENS:DATA:FIFO:RESet, 234
SENS:FUNC:CUST:REF, 236
SENS:FUNC:CUST:TC, 237
SENS:FUNC:RESistance, 239
SENS:FUNC:STRain, 240
SENS:FUNC:TEMPerature, 241
SENS:FUNC:VOLTage, 243
SENS:REF:TEMPerature, 246
SENS:REFerence, 244

SENSe subsystem, 226, 227, 228, 230, 232, 234, 235, 236,
237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247,
248, 249, 250, 251, 252
SENSe:CHANnel:SETTling, 227
SENSe:CHANnel:SETTling?, 227
SENSe:DATA:CVTable?, 228
SENSe:FREQuency:APERture, 234
SENSe:FREQuency:APERture?, 234
SENSe:FUNC:CONDition, 235
SENSe:FUNC:CUSTom, 235
SENSe:FUNCtion:FREQuency, 238
SENSe:FUNCtion:TOTalize, 243
SENSe:REFerence:CHANnels, 246
SENSe:STRain:EXCitation, 247
SENSe:STRain:EXCitation?, 247
SENSe:STRain:GFACtor, 248
SENSe:STRain:GFACtor?, 248
SENSe:STRain:POISson, 249
SENSe:STRain:POISson?, 249
SENSe:STRain:UNSTrained, 249
SENSe:STRain:UNSTrained?, 250
SENSe:TOTalize:RESet:MODE, 250
SENSe:TOTalize:RESet:MODE?, 252
Sensing

Reference temperature with the VT1415A, 35
Sensing 4-20 mA, 45
Separator, command, 154
Sequence, A complete thermocouple measurement
command, 66
Sequence, ALG:DEFINE in the programming, 121
Sequence, example command, 88
Sequence, operating, 118
Sequence, the operating, 82
Setting algorithm execution frequency, 88
Setting filter cutoff frequency, 58
Setting input function, 68
Setting input polarity, 68
Setting output drive type, 69
Setting output functions, 70
Setting output polarity, 69
Setting SCP gains, 58
Setting the HP E1505 current source SCP, 59
Setting the logical address switch, 18
Setting the trigger counter, 81
Setting the VT1511A strain bridge SCP excitation voltage,
60
Setting up analog input and output channels, 58
Setting up digital input and output channels, 68
Setting up digital inputs, 68
Setting up digital outputs, 69
Setting up the trigger system, 78
Settings conflict

ARM:SOUR vs TRIG:SOUR, 178, 274

Index 419

SETTling
SENSe:CHANnel:SETTling, 227

Settling characteristics, 106
SETTling?

SENSe:CHANnel:SETTling?, 227
SETup

CAL:SETup, 184
CAL:SETup?, 184

Shield Connections
When to make, 353

Shielded wiring, IMPORTANT!, 32
SHUNt

OUTP:SHUNt, 216
OUTPut:SHUNt?, 217

Signal, connection to channels, 37
Signals, outputting trigger, 81
SIZE

MEM:VME:SIZE, 210
Size, determining an algorithm’s, 123
SIZe?

ALGorithm :EXPLicit :SIZe?, 169
SIZE?

MEM:VME:SIZE?, 211
SOURce

ARM:SOURce, 179
ARM:SOURce?, 180
OUTPut:TTLTrg:SOURce, 217
TRIG:SOURce, 274

SOURce subsystem, 253, 254, 255, 256, 257
Source, selecting the trigger, 79
Source, selecting trigger timer arm, 80
SOURce:FM:STATe, 253
SOURce:FM:STATe?, 254
SOURce:FUNC :SHAPe , 255
SOURce:FUNC :SHAPe :CONDition, 254
SOURce:FUNC :SHAPe :PULSe, 254
SOURce:PULM:STATe, 255
SOURce:PULM:STATe?, 255
SOURce:PULSe:PERiod, 256
SOURce:PULSe:PERiod?, 256
SOURce:PULSe:WIDTh, 257
SOURce:PULSe:WIDTh?, 257
SOURce?

TRIG:SOURce?, 275
Sources

arm, 78
trigger, 78

Special considerations, 104
Special identifiers for channels, 135
Special VT1415A reserved keywords, 134
Specifications, 295, 296, 297, 298, 299, 300, 301, 302,
303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313,
314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324
Specifying the data format, 77
SQUare

SOURce:FUNC :SHAPe , 255
Standard Commands for Programmable Instruments,
SCPI, 159
Standard EU operation, 99
Standard event group examples, 96
Standard reserved keywords, 134
Starting the PID algorithm, 81
STAT:OPER:CONDition?, 260
STAT:OPER:ENABle, 261
STAT:OPER:ENABle?, 261
STAT:OPER:EVENt?, 262
STAT:OPER:NTRansition, 262
STAT:OPER:NTRansition?, 263
STAT:OPER:PTRansition, 263
STAT:OPER:PTRansition?, 264
STAT:PRESet, 264
STAT:QUES:CONDition?, 265
STAT:QUES:ENABle, 265
STAT:QUES:ENABle?, 266
STAT:QUES:EVENt?, 266
STAT:QUES:NTRansition, 267
STAT:QUES:NTRansition?, 267
STAT:QUES:PTRansition, 268
STAT:QUES:PTRansition?, 268
STATe

ALGorithm :EXPLicit , 170
INP:FILT:LPAS:STATe, 204
INP:FILT:LPAS:STATe?, 205
MEM:VME:STATe, 211
MEM:VME:STATe?, 212
OUTPut:CURRent:STATe, 215
OUTPut:CURRent:STATe?, 215
SOURce:PULM:STATe, 255

STATe?
ALGorithm :EXPlicit , 171
SOURce:PULM:STATe?, 255

Statement, algorithm language
writecvt(), 116
writefifo(), 117

Statement:, 142
Statement-list:, 142
Statements and functions, intrinsic

abs(expression), 135
interrupt(), 117, 135
max(expression1,expression2), 135
min(expression1,expression2), 135
writeboth(expression,cvt_element), 135
writecvt(expression,cvt_element), 116, 135
writefifo(expression), 117, 135

Statements:, 136
Static discharge safe handling, CAUTION, 19
Static state (CONDition) function, 68, 70
STATus subsystem, 258, 259, 260, 262, 263, 264, 265,
266, 268
Status variable, 75
Storage, defining data, 77

420 Index

STORe
CAL:STORe, 185

STRain
SENS:FUNC:STRain, 240

Structure, overall program, 146
Structures, data, 137
Sub subsystem, 191, 192, 193, 195, 196, 197, 198, 199,
200, 201, 209, 211, 212
Subsystem

ABORT, 160
ARM, 178, 179
CALibration, 181, 182, 184, 185, 186, 187, 188, 189,
190
DIAGnostic, 191, 192, 193, 195, 196, 197, 198
FORMat, 199, 200, 201
INITiate, 202
INPut, 203, 205, 207, 208
MEMory, 209, 211, 212
OUTPut, 213, 214, 215, 217, 218, 219, 221
ROUTe, 222, 223
SAMPle, 224, 225
SENSe, 226, 227, 228, 230, 232, 234, 235, 236, 237,
238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248,
249, 250, 251, 252
SOURce, 253, 254, 255, 256, 257
STATus, 258, 259, 260, 262, 263, 264, 265, 266, 268
SYSTem, 269, 270
TRIGger, 271, 272, 273, 274, 275

Summary, 102
Summary, language syntax, 139
Supplying the reference temperature, 66
support, xv
support resources, xv
Swapping, defining an algorithm for, 122
Switch, setting the logical address, 18
Symbols, the operations, 144
Syntax, Variable Command, 155
SYST:CTYPe?, 269
SYST:ERRor?, 269
SYST:VERSion?, 270
SYSTem subsystem, 269, 270
System wiring offsets, 102
System, setting up the trigger, 78
System, using the status, 91

T

Tables, creating conversion, 101
Tables, custom EU, 100
Tables, loading custom EU, 101
TARE

CAL:TARE:RESet, 187
CAL:TARE?, 188

Tare cal offset, maximum, 296
TARE?

CAL:TARE, 186
TCouple

SENS:FUNC:CUST:TC, 237
technical support, xv
Techniques

Wiring and noise reduction, 352
TEMPerature

DIAG:CUST:REF:TEMP, 195
SENS:FUNC:TEMPerature, 241
SENS:REF:TEMPerature, 246

Temperature accuracy, 297
Temperature, measuring the reference, 65
Temperature, supplying the reference, 66
Terminal block considerations for TC measurements, 36
Terminal Blocks, 334
Terminal Module, 335

Attaching and removing the VT1415A, 43
Attaching the VT1415A, 43
Removing the VT1415A, 43
Wiring and attaching the, 41

Terminal Module Layout, 33
Terminal module options, 47
Terminal module wiring maps, 46
Terminal modules, 33
The algorithm execution environment, 111
The arithmetic operators, 144
The comparison operators, 144
The logical operators, 144
The main function, 112
The operating sequence, 82
The operations symbols, 144
The pre-defined PIDA algorithm, 73
The pre-defined PIDB algorithm, 74
The static modifier, 137
The status byte group’s enable register, 97
Thermistor

Connecting the on-board, 40
Thermistor and RTD measurements, 63
Thermocouple measurements, 64
Thermocouple reference temperature compensation, 64
Thermocouples and CAL:TARE, 102
Time relationship of readings in FIFO, 117
TIMe?

ALGorithm :EXPLicit , 171
Timer

SAMP:TIMer, 224
SAMP:TIMer?, 225

TIMer
TRIG:COUNt, 273
TRIG:TIMer, 275

Timer, programming the trigger, 80
TIMer?

TRIG:TIMer?, 275
TOTalize

SENSe:FUNCtion:TOTalize, 243
Totalizer function, 69
Transducers, detecting open, 104

Index 421

TRIG:COUNt, 273
TRIG:COUNt?, 273
TRIG:IMMediate, 273
TRIG:SOURce, 274
TRIG:SOURce?, 275
TRIG:TIMer, 275
TRIG:TIMer?, 275
TRIGger subsystem, 271, 272, 273, 274, 275
trigger system

ABORt subsystem, 160
ARM subsystem, 178, 179
INITiate subsystem, 202
TRIGger subsystem, 271, 272, 273, 274, 275

Trigger, variable width pulse per, 70
TTLTrg:SOURce

OUTPut:TTLTrg:SOURce?, 218
TTLTrg<n>

OUTP:TTLT<n>:STATe?, 219
OUTP:TTLTrg<n>:STATe, 218

Tuning, PID algorithm, 91
TYPe

OUTPut:TYPE, 219
Type, setting output drive, 69
TYPe?

OUTPut:TYPE?, 220
Types, data, 136

U

Unary arithmetic operator, 144
Unary logical operator, 135
Unary operators, 135
Unary-expression:, 140
Unary-operator:, 140
Unexpected channel offsets or overloads, 104
UNSTrained

SENSe:STRain:UNSTrained, 249
SENSe:STRain:UNSTrained?, 250

Update rate, maximum, 295
Updating the algorithm variables, 87
Updating the algorithm variables and coefficients, 87
Updating the status system and VXI interrupts, 98
Usage, example language, 111
Using the status system, 91

V

Value types
parameter data, 158
returned, 158

Values, assigning, 143
Values, reading running algorithm, 83
Variable Command Syntax, 155
Variable frequency square-wave output (FM), 71
Variable width pulse per trigger, 70

Variable width pulses at fixed frequency (PWM), 70
Variable, status, 75
Variables, communication using global, 127
Variables, declaring, 143
Variables, global, 139
Variables, initializing, 116
Variables, modifying running algorithm, 87
Variables, reading algorithm, 83
Verifying a successful configuration, 25
VERsion?

SYST:VERSion?, 270
Voids Warranty

Cutting Input Protect Jumper, 23
Voltage

CAL:VALue:VOLTage, 189
VOLTage

CAL:CONF:VOLT, 183
SENS:FUNC:VOLTage, 243

Voltage, setting the VT1511A strain bridge SCP
excitation, 60
VOLTage:AMPLitude

OUTPut:VOLTage:AMPLitude, 220
OUTPut:VOLTage:AMPLitude?, 221

VT1415A background operation, 98
VT1415A, configuring the, 17

W

Warranty, iii
Voided by cutting Input Protect Jumper, 23

What *CAL? does, 72
What is a custom algorithm?, 110
When to make shield connections, 353
When:, re-execute *CAL?, 73
Where to go next, 147
Which FIFO mode?, 85
WIDTh

SOURce:PULSe:WIDTh, 257
WIDTh?

SOURce:PULSe:WIDTh?, 257
WINDow

ALGorithm:UPDate:WINDow, 176
WINDow?

ALGorithm:UPDate:WINDow?, 177
Wiring

planning for thermocouple, 32
planning layout, 29
signal connection, 37

Wiring and attaching the terminal module, 41
Wiring maps

Terminal Module, 46
Wiring techniques, for noise reduction, 352
Wiring the terminal module, 41
writeboth(expression,cvt_element), 136
writecvt(expression,cvt_element), 116, 136

422 Index

writefifo(expression), 117, 136
Writing the algorithm, 125
Writing values to CVT elements, 116
Writing values to the FIFO, 117

Z

ZERO?
CAL:ZERO?, 190

Index 423

AcquisitionAcquisition

Technology™
VXI

AcquisitionOnline at vxitech.com 949 • 955 • 1VXI 209

VT1413C VT1415A/1422A

Overview

The VT1415A and VT1422A are C-size, single-slot, VXI modules
capable of either multi-function input/output (data acquisition)
or powerful control capabilities. They serve as powerful data
acquisition modules that handle analog input/output and digital
input/output in both static and dynamic modes. The digital
capability includes the ability to set or sense static states, to
measure input frequency and period, to totalize, and to input or
output PWM and FM signals. Refer to the VXI Technology Website
for instrument driver availability and downloading instructions, as
well as for recent product updates, if applicable.

Algorithmic Closed Loop Controller - VT1415A

More powerful than PID controllers and easier to implement than
large custom control systems, the VT1415A fills a unique niche in
the data acquisition and control field, providing both control and
precise data acquisition. Applications include:

• PID control of stimulus loops such as hydraulic actuators,
 levers, rotational devices as in structural test

• PID control of temperature, position, velocity, acceleration and
 more

• Complex control such as cascade loops in thermal cooling
 jackets, ratio

• Independent loops with multi-level alarms.

The design of the on-board, DSP firmware assures the user that all
inputs, all calculations, and all outputs can be completed between
scan triggers. This means there is no drift, or jitter in the critical
time intervals that are used to calculate integrals and derivatives in
control algorithms.

The firmware allows a user to employ pre-written PID control
algorithms, modify them for specific application needs, or to write
an application from scratch. Low duty-cycle connection to the host
computer allows interaction between the host and real-time DSP
so the user can update algorithms, change tuning constants, or do
envelope control. Limited host computer interaction leads to very
high performance (8-loops, update rate 1000/second per loop with
simple PID calculation included).

Multi-function Data Acquisit ion & Control Module - VT1422A

The VT1422A is a module that is essentially the same as the
VT1415A and has all of the same data acquisition and control
capabilities as the VT1415A, plus some additional features.

Algorithmic Closed Loop Controller and
Remote Channel Multifunction DAC

Features
Powerful Data Acquisition Capability

Powerful Control Capability

Comprehensive On-board Signal
Conditioning

Custom On-board DSP Program
Development

Wide Choice of Input/Output
Signal Types

Large Channel-count Strain Signal
Conditioning and Measurement

Technology™
VXI

AcquisitionOnline at vxitech.com 949 • 955 • 1VXI210 Acquisition

Algorithmic Closed Loop Controller and
Remote Channel Multifunction DAC

VT1415A/1422A

The VT1422A Remote Channel Multi-Function DAC Module
supports the VT1539A Remote Channel Signal Conditioning
Plug-on and the VT1529B Remote Strain Signal Conditioning
Unit to form a high-performance, but economical strain
measurement system.

The VT1422A serves as the controller in this system,
managing all the configuration, calibration, triggering of
measurements, EU conversion, and calibration processes.

The main differences between the VT1415A and VT1422A
are:

• The VT1422A has 40 kB of memory available for user
 algorithms; the VT1415A has 48 kB.

• If the only thing being done in an application is collection
 of strain data, the VT1422A user doesn’t have to write an
 algorithm, as for the VT1415A.

• The VT1422A offers the same two Terminal Blocks as does
 the VT1415A.
 (Option 011 screw terminals and Option 013 spring clamp)

Automated Calibration for Better Measurements

The VT1415A and VT1422A offer superior calibration
capabilities that provide more accurate measurements.
Periodic calibration of the module’s measurement inputs
is accomplished by connecting an external voltage
measurement standard (such as a highly accurate
multimeter) to the inputs of the module. This external
standard first calibrates the on-board calibration source.
Then built-in calibration routines use the on-board calibration
source and on-board switching to calibrate the entire signal
path from the closed loop controller’s input, through the
signal conditioning plug-ons (SCPs) and FET MUX, to the
A/D itself. Subsequent daily or short-term calibrations of
this same signal path can be quickly and automatically
done using the internal calibration source to eliminate
errors introduced by the signal path through the SCPs and
FET MUX or by ambient temperature changes. All input
channels can be quickly and productively calibrated to assure
continued high-accuracy measurements.

In addition to the calibration of the signal paths within the
modules, the VT1415A and VT1422A allow you to perform
a “Tare Cal” to reduce the effects of voltage offsets and IR
voltage drops in your signal wiring that is external to the
module. The Tare Cal uses an on-board D/A to eliminate these
voltage offsets. By placing a short circuit across the signal
or transducer being measured, the residual offset can be
automatically measured and eliminated by the D/A. Tare Cal
should not be used to eliminate the thermoelectric voltage of
thermocouple wire on thermocouple channels.

Flexibil i ty with Deterministic Control

The VT1415A and VT1422A are digital sampling closed loop
control systems that are complete in a single VXI module. All
signal conditioning, process monitoring, control calculations,
and control signals are handled on-board without the need
for computer supervision. Once setup is done, the module is
essentially free-running.

The inputs are updated at the beginning of each cycle and the
outputs are updated at a later deterministic time in the cycle
so that various paths in the control algorithm do not affect
the loop timing. These steps are executed automatically and
deterministically without need for intervention from a system
computer.

Other Features

Digital Sampling Closed Loop Control System

The VT1415A/VT1422A combine flexibility with deterministic
control. Control algorithms for each of the loops can be the
default PID calculation or a user-defined, downloaded, custom
algorithm. The loop update rate is deterministically controlled
by an internal clock so that variations in the algorithm
execution times do not affect the loop cycle time.

Powerful Control Capability

The control algorithm for each loop is easily developed by the
user from a list of algebraic expressions and flow constructs
such as IF, THEN, ELSE. Tuning is simplified because all of
the constants in the algorithm as well as the algorithm itself
can be updated on-the-fly. New values are double-buffered
so there is no need to stop scanning the inputs or halt the
algorithm execution.

Digital Sampling Closed Loop System

VX
I B

ac
kp

la
ne

Signal
Cond.

Signal
Cond.

Engr. Unit
Conversion

Control
Algorithm
Execution

A24
Double

Buffered
Memory

FIFO
CVT

Buffers

40 MHz
DSP

Input

Output

AcquisitionAcquisition

Technology™
VXI

AcquisitionOnline at vxitech.com 949 • 955 • 1VXI 211

Algorithmic Closed Loop Controller and
Remote Channel Multifunction DAC

VT1415A/1422A

The on-board 40 MHz pipelined DSP provides highly
deterministic execution, making it easy to accurately predict
cycle times. Engineering unit conversions for temperature,
strain, resistance, and voltage measurements are made
automatically without slowing down the algorithm execution
speed.

Wide Choice of Inputs/outputs

The inputs to the loop algorithm can be measured values
from multiple channels, operator input values, outputs from
other loops, or values from other subsystems. The VT1415A/
VT1422A have a variety of signal conditioning plug-ons for
making measurements of:

• Temperature, strain
• Voltage, current, resistance
• RPM, frequency, totalize
• Discrete levels, TTL, contact closures

In addition, the measured input values and the calculated
output values can be stored in a 64,000-sample FIFO buffer
and efficiently transferred to the controlling computer in
blocks of data. With this feature, it is no longer necessary to
waste resources by dedicating a data acquisition channel to
monitor each control loop input and output. The result of any
algorithm calculation can be an input for use by another loop
or subsystem, or it can be a direct output of several different
types. Among the choices of output are:

• Analog voltage
• Analog current
• Discrete levels (TTL)
• Pulse width modulation (TTL)

As an example of output flexibility, the pulse width
modulation output has several modes. In the PWM free-
run mode, the frequency or pulse width output rate is
independent of the loop update rate and can be changed
once per loop update cycle. The square wave mode provides
a variable frequency, fixed 50% duty cycle output signal.
The pulse-per-update mode provides a variable width pulse
synchronized to the loop update cycle.

Operator Control

Manual control can be implemented through a user software
interface or external hardware, such as a potentiometer.
Seamless transfer from auto to manual mode, or manual to
auto is handled automatically by a set-point-tracking routine
in the default PID algorithm code.

Signal Conditioning Plug-Ons

A Signal Conditioning Plug-on (SCP) is a small daughter
board that mounts on VXI Technology’s VXI scanning
measurement and control modules. These SCPs provide a
number of input and output functions. Several include gain
and filtered analog inputs for measuring electrical and sensor-
based signals, as well as frequency, total event count, pulse-
width modulation, toothed-wheel velocity, and digital state.
Output functions include analog voltage and current D/As, 8-
or 16-bit digital outputs, pulse output with variable frequency
and PWM, and stepper motor control.

Refer to the information on each individual SCP for more
details.

Voltage Measurements

Use any of the following SCPs with the VT1415A/VT1422A to
make voltage measurements: VT1501A, VT1502A, VT1503A,
VT1508A, VT1509A, VT1512A, or VT1513A.

Temperature Measurements

Any of the input SCPs can be used to make temperature
measurements with thermocouples, thermistors, or RTDs, but
the VT1503A/VT1508A/VT1509A SCPs provide higher accuracy
with thermocouples.

Resistance Measurements

Resistance is measured using either the VT1505A 8-channel
Current Source SCP and an input SCP or the VT1518A 4-wire
Resistance Measurement SCP. Measurements are made by
applying a dc current to the unknown and measuring the
voltage drop across the unknown.

Static Strain Measurements

There are two ways to make static strain measurements.

The VT1506A and VT1507A SCPs provide a convenient way
to measure a few channels of static strain. When using the
VT1506A/VT1507A for bridge completion, a second SCP is
required to make the measurement connection. You can use
the following SCPs for this type of static strain measurements:

• VT1503A 8-channel Programmable Filter/Gain

• VT1506A 8-channel 120 Ω Strain Completion & Excitation

• VT1507A 8-channel 350 Ω Strain Completion & Excitation

• VT1508A 8-channel 7 Hz Fixed Filter & x16 Gain

• VT1509A 8-channel 7 Hz Fixed Filter & x64 Gain

Technology™
VXI

AcquisitionOnline at vxitech.com 949 • 955 • 1VXI212 Acquisition

Algorithmic Closed Loop Controller and
Remote Channel Multifunction DAC

VT1415A/1422A VT1415A/1422A

For applications requiring large channel counts of strain
measurement, the EX1629 provides a more cost effective
approach to static (and dynamic) strain measurements.

Dynamic strain measurements are implemented by
connecting the EX1629 to high-speed digitizers, such as the
VXI Technology VT1432B and VT1433B.

Note: SCPs are also available for making dynamic strain
measurements (VXI Technology VT1510A, VT1511A, and
VT1521).

Transient Measurements

When making higher speed measurements, a vital issue
often is the time skew between channels. Ideally, in many
applications, the sampled data is needed at essentially
the same instant in time. While the intrinsic design of the
VT1415A/VT1422A provides scanning of 64 channels, with
maximum skew of 640 µs between the first and last channel
(far less than most sampled data systems), this still may not
be small enough skew for some applications.

Transient Voltage Measurements

The VT1510A provides basic sample-and-hold capabilities
on four channels. Six-pole Bessel filters provide alias and
alias-based noise reduction while giving excellent transient
response without overshoot or ringing. The VT1510A can
be used in strain applications primarily where the bridge is
external.

Transient Strain Measurements

The VT1511A, a double-wide SCP, has all the capabilities
of the VT1510A but adds on-board bridge excitation and
completion functions. The four direct input channels are used
for monitoring the bridge excitation. A maximum of four SCPs
(16 channels) can be installed on a VT1415A/VT1422A.

Analog Output

Use the VT1531A for voltage outputs, and the VT1532A for
current outputs. The VT1531A and VT1532A have eight (8)
output channels available on each SCP.

A maximum of seven (7) VT1532A SCPs can be installed on
each VT1415A/VT1422A due to power limitations. There are no
power restrictions on the VT1531A.

Digital I/O

Use the VT1533A Digital I/O SCP to provide two 8-bit input/
output words.

Frequency/Totalize/PWM

The VT1538A Enhanced Frequency/Totalize/PWM SCP provides
eight (8) channels which can be individually configured as a
frequency or totalizer input, or as a pulse width modulated
output.

Compact Packaging with Signal Conditioning

The VT1415A/VT1422A provide for configurable signal
conditioned I/O with up to eight individual plug-ons for
analog, digital, and frequency needs. The SCPs are:

• VT1501A 8-channel Direct Input SCP

• VT1502A 8-channel 7 Hz Low-pass Filter SCP

• VT1503A 8-channel Programmable Filter and Gain SCP

• VT1505A 8-channel Current Source SCP

• VT1506A 8-channel 120 Ω Strain Completion &

 Excitation SCP

• VT1507A 8-channel 350 Ω Strain Completion &

 Excitation SCP

• VT1508A 8-channel x16 Gain & 7 Hz Fixed Filter SCP

• VT1509A 8-channel x64 Gain & 7 Hz Fixed Filter SCP

• VT1510A 4-channel Sample & Hold Input SCP

• VT1511A 4-channel Transient Strain SCP

• VT1512A 8-channel 25 Hz Fixed Filter SCP

• VT1513A 8-channel Divide-by-16 Fixed Attenuator &

 7 Hz Low-pass Filter SCP

• VT1518A 4-wire Resistance Measurement SCP

• VT1521 4-channel High-speed Bridge SCP

• VT1531A 8-channel Voltage Output SCP

• VT1532A 8-channel Current Output SCP

• VT1533A 16-bit Digital I/O SCP

• VT1536A 8-bit Isolated Digital I/O SCP

• VT1538A Enhanced Frequency/Totalize/PWM SCP

• VT1539A Remote Channel SCP (VT1422A only)

Product Specifications

AcquisitionAcquisition

Technology™
VXI

AcquisitionOnline at vxitech.com 949 • 955 • 1VXI 213

Algorithmic Closed Loop Controller and
Remote Channel Multifunction

VT1415A/1422A

Timing Signals

Timing: Scan-to-scan timing and
 sample-to-sample
 timing can be set
 independently.

Scan triggers: Can be derived from a software
 command or a TTL level from
 other VXI modules, internal timer,
 or external hardware.
 Typical latency 17.5 µs.

Synchronization: Multiple VT1415A/VT1422A
 modules can be synchronized
 at the same rate using the TTL
 trigger output from one
 VT1415A/VT1422A to trigger
 the others.

Alternate Multiple VT1415A/VT1422A
synchronization: modules can be synchronized at
 different integer-related rates
 using the ALG:SCAN:RATIO
 command and the TTL trigger
 output from one VT1415A/
 VT1422A module to trigger
 the others.

Scan Triggers

Internal: 100 µs to 6.5536 s

Resolution: 100 µs

Trigger count: 1 to 65535 or infinite

Sample Timer VT1415A: 10 µs to 32768 ms
Range: VT1422A: 40 µs to 32768 ms

Resolution: 0.5 µs

Measurement Specifications

The following specifications include the SCP and scanning
A/D performance together as a unit. Accuracy is stated for
a single sample. Averaging multiple samples will improve
accuracy by reducing noise of the signal. The basic VT1415A
scanning A/D has a full-scale range of ±16 V and five auto-
ranging gains of x1, x4, x16, x64, and x256. An SCP must be
used with each eight channel input block to provide input
protection and signal conditioning.

Note: For field wiring, the use of shielded twisted pair
wiring is highly recommended.
Measurement resolution: 16 bits (including sign)

Maximum reading rate: VT1415A: Up to 56 kSa/s
 dependent upon configuration
 VT1422A: Up to 25 kSa/s
 dependent upon configuration

Memory: 64 kSamples

Maximum input voltage: Normal mode plus
 common mode

 Operating: ±16 V peak
 Damage level: ±42 V peak

Maximum common mode voltage:

 Operating: ±16 V peak
 Damage level: ±42 V peak

SCP input impedance: 100 MΩ differential

Maximum tare cal offset: 62.5 mV range ±75% of full
 scale, other ranges ±25%
 of full-scale
Jitter:

Phase jitter scan-to-scan: 80 ps rms

Phase jitter card-to-card: 41 ns peak 12 ns rms

Measurement Accuracy

Typically ±0.01% of input level; varies with the SCP used.
Specifications are 90 days, 23 °C ± 1 °C, with *CAL done after
a 1hr warm-up and CAL:ZERO done within 5 minutes. Note:
Beyond the 5min. limitation and CAL:ZERO not done, apply the
following drift error: Drift = 10 µV/°C ÷ SCP gain, per °C change
from CAL:ZERO temperature.

Accuracy Data

Measurement accuracy is dependent upon the SCP module used.
Refer to the accuracy tables and graphs for the individual SCP to
determine the overall measurement accuracy.

Many definitions of accuracy are possible. Here we use single-
shot with 3 sigma noise. To calculate accuracy assuming
temperature is held constant within ±1 °C of the temperature at
calibration, the following formula applies:

Single Shot 3σ = ±(√((GainError)2 + (OffsetError)2+ (3σ noise)2))

Correcting for Temperature

Technology™
VXI

AcquisitionOnline at vxitech.com 949 • 955 • 1VXI214 Acquisition

Algorithmic Closed Loop Controller and
Remote Channel Multifunction

VT1415A/1422A VT1415A/1422A

To calculate accuracy over temperature range outside the
±1 °C range, results after *CAL are given by replacing each of
the above error terms as follows:

Replace
 (GainError)2
with
 (GainError)2 + (GainTempco)2

Replace
 (OffsetError)2
with
 (OffsetError)2 + (OffsetTempco)2

Loop Control Specifications

Number of loops: 1 to 32

Default control PID
algorithm type:

Maximum VT1415A loop update rate
for default PID algorithm:

(Note: VT1422A maximum sample rate is 25 kSamples/s,
compared to 56 kSa/s for the VT1415A. The loop
speeds of the VT1422A are reduced in same ratio.)

 1 loop: 3 kHz
 8 loops: 1 kHz
 32 loops: 250 Hz

Custom algorithm development:

Language: Subset of C programming
language including if-
then-else, most math and
comparison operations.

Variable types: Scalar local and global

 variables, array local and
 global variables.

Intrinsic functions: interrupt(), writefifo(),
 writecvt(),writeboth(),
 min(), max(), abs().

Other functions: Create own custom
 functions to handle
 transcendental operations.

I/O General

A total of eight (8) Signal Conditioning Plug-ons (SCPs)
can be installed in most combinations of input or output
configurations on a single VT1415A/VT1422A.

Power Available for SCPs
 ±24 V: 1.0 A
 5 V: 3.5 A

General Specifications

VXI device type: A16, slave only,
 Register based

Size: C

Slots: 1

Connectors: P1/2

Shared memory: n/a

VXI buses: TTL Trigger bus

Drivers: VXIplug&play with
 Source Code

Instrument Drivers - See the VXI Technology Website
www.vxitech.com for driver availability and
downloading.
VT1415A Algorithmic Closed Loop Controller,

AcquisitionAcquisition

Technology™
VXI

AcquisitionOnline at vxitech.com 949 • 955 • 1VXI 215

Algorithmic Closed Loop Controller and
Remote Channel Multifunction

VT1415A/1422A

ACCESSORIES

73-0025-002 Option 011 Screw Terminal Connector Block

73-0025-003 Option 013 Spring Clamp Terminal Connector Block

73-0025-004 Option A3F Interface to Rackmount Terminal Panel

Ordering Information

Includes Spring Clamp Terminal Block VT1415A-02 Algorithmic Closed Loop
Controller, Includes Screw Connector Terminal Block
VT1415A-A3F Interface to rackmount terminal panel
VT1422A Remote Channel Multi-function Data Acquisition & Control Module
VT1422A-001 16-Port RJ-45 Connector Block (supports VT1415A also)
VT1422A-011 Screw Terminal Connector Block (supports VT1415A also)
VT1422A-013 Spring Clamp Terminal Connector (supports VT1415A also)
VT1501A 8-channel Direct Input SCP
VT1502A 8-channel 7 Hz Low-pass Filter SCP
VT1503A 8-channel Programmable Filter/Gain SCP
VT1505A 8-channel Current Source SCP
VT1506A 8-channel 120 Ω Strain Completion & Excitation SCP
VT1507A 8-channel 350 Ω Strain Completion & Excitation SCP
VT1508A 8-channel x16 Gain & 7 Hz Fixed Filter SCP
VT1509A 8-channel x64 Gain & 7 Hz Fixed Filter SCP
VT1510A 4-channel Sample & Hold Input SCP
VT1511A 4-channel Transient Strain SCP
VT1512A 8-channel 25 Hz Fixed Filter SCP
VT1513A 8-channel ÷ 16 Fixed Attenuator & 7 Hz Low-pass Filter SCP
VT1518A 4-wire Resistance Measurement SCP
VT1521 4-channel High-Speed Bridge SCP
VT1531A 8-channel Voltage Output SCP
VT1532A 8-channel Current Output SCP
VT1533A 16-bit Digital I/O SCP
VT1536A 8-bit Isolated Digital I/O SCP
VT1538A Enhanced Frequency/Totalize/PWM SCP
VT1539A Remote Channel Signal Conditioning Plug-on (VT1422A only)

VT
14

15
A/

VT
14

22
A

	Table of Contents
	Warranty iii
	Safety Symbols iv
	Note for European Customers iv
	Support Resources xv
	Chapter 1. Getting Started 17
	About This Chapter 17
	Configuring the VT1415A 17
	Setting the Logical Address Switch 18
	Installing SCPs 19
	Disabling the Input Protect Feature (Optional) 23
	Disabling Flash Memory Access (Optional) 23

	Instrument Drivers 25
	About Example Programs 25
	Verifying a Successful Configuration 25

	Chapter 2. Field Wiring 29
	About This Chapter 29
	Planning the Wiring Layout 29
	SCP Positions and Channel Numbers 29
	Sense SCPs and Output SCPs 31
	Planning for Thermocouple Measurements 32

	Terminal Modules 33
	The SCPs and Terminal Module 33
	Terminal Module Layout 33

	Reference Temperature Sensing with the VT1415A 35
	Preferred Measurement Connections 37
	Connecting the On-Board Thermistor 40
	Wiring and Attaching the Terminal Module 41
	Attaching/Removing the VT1415A Terminal Module 43
	Adding Components to the Terminal Module 45
	Terminal Module Wiring Maps 46
	Terminal Module Option 47
	Option A3F 47

	Faceplate Connector Pin-Signal Lists 49

	Chapter 3. Programming the VT1415A for PID Control 51
	About This Chapter 51
	Overview of the VT1415A Algorithmic Loop Controller 52
	Operational Overview 52

	Programming Model 53
	Executing the Programming Model 55
	Power-On and *RST Default Settings 55

	Setting Up Analog Input and Output Channels 58
	Configuring Programmable Analog SCP Parameters 58
	Linking Channels to EU Conversion 60
	Linking Output Channels to Functions 67

	Setting Up Digital Input and Output Channels 68
	Setting Up Digital Inputs 68
	Setting Up Digital Outputs 69

	Performing Channel Calibration (Important!) 72
	Defining Standard PID Algorithms 73
	The Pre-Defined PIDA Algorithm 73
	The Pre-Defined PIDB Algorithm 74
	Defining a PID with ALG:DEFINE 76

	Pre-Setting PID Variables and Coefficients 77
	Pre-Setting PID Variables 77

	Defining Data Storage 77
	Specifying the Data Format 77
	Selecting the FIFO Mode 78

	Setting up the Trigger System 78
	Arm and Trigger Sources 78
	Programming the Trigger Timer 80
	Setting the Trigger Counter 81
	Outputting Trigger Signals 81

	INITiating/Running Algorithms 81
	Starting the PID Algorithm 81
	The Operating Sequence 82

	Reading Running Algorithm Values 83
	Reading Algorithm Variables 83
	Reading Algorithm Values From the CVT 83
	Reading History Mode Values From the FIFO 84

	Modifying Running Algorithm Variables 87
	Updating the Algorithm Variables and Coefficients 87
	Enabling and Disabling Algorithms 87
	Setting Algorithm Execution Frequency 88

	Example Command Sequence 88
	A Quick-Start PID Algorithm Example 89
	PID Algorithm Tuning 91
	Using the Status System 91
	Enabling Events to be Reported in the Status Byte 94
	Reading the Status Byte 96
	Clearing the Enable Registers 97
	The Status Byte Group’s Enable Register 97
	Reading Status Groups Directly 97

	VT1415A Background Operation 98
	Updating the Status System and VXIbus Interrupts 98
	Creating and Loading Custom EU Conversion Tables 99
	Compensating for System Offsets 102
	Special Considerations 104

	Detecting Open Transducers 104
	More On Auto Ranging 106
	Settling Characteristics 106
	Background 106
	Checking for Problems 107
	Fixing the Problem 107

	Chapter 4. Creating and Running Custom Algorithms 109
	About This Chapter 109
	Describing the VT1415A Closed Loop Controller 110
	What is a Custom Algorithm? 110
	Overview of the Algorithm Language 110
	Example Language Usage 111

	The Algorithm Execution Environment 111
	The Main Function 112
	How the Algorithms Fit In 112

	Accessing the VT1415A’s Resources 113
	Accessing I/O Channels 114
	Defining and Accessing Global Variables 115
	Determining First Execution (First_loop) 115
	Initializing Variables 116
	Sending Data to the CVT and FIFO 116
	Setting a VXIbus Interrupt 117
	Determining an Algorithm’s Identity (ALG_NUM) 117
	Calling User Defined Functions 118

	Operating Sequence 118
	Overall Sequence 119
	Algorithm Execution Order 119

	Defining Custom Algorithms (ALG:DEF) 121
	ALG:DEFINE in the Programming Sequence 121
	ALG:DEFINE’s Three Data Formats 121
	Changing a Running Algorithm 122

	A Very Simple First Algorithm 124
	Writing the Algorithm 125
	Running the Algorithm 125

	Modifying a Standard PID Algorithm 125
	PIDA with Digital On-Off Control 125

	Algorithm to Algorithm Communication 126
	Communication Using Channel Identifiers 126
	Communication Using Global Variables 127

	Non-Control Algorithms 129
	Data Acquisition Algorithm 129
	Process Monitoring Algorithm 129

	Implementing Setpoint Profiles 130

	Chapter 5. Algorithm Language Reference 133
	Language Reference 133
	Standard Reserved Keywords 134
	Special VT1415A Reserved Keywords 134
	Identifiers 134
	Special Identifiers for Channels 135
	Operators 135
	Intrinsic Functions and Statements 135
	Program Flow Control 136
	Data Types 136
	Data Structures 137
	Bitfield Access 138

	Language Syntax Summary 139
	Program Structure and Syntax 143
	Declaring Variables 143
	Assigning Values 143
	The Operations Symbols 144
	Conditional Execution 144
	Comment Lines 146
	Overall Program Structure 146
	Where To Go Next 147

	Chapter 6. VT1415A Command Reference 149
	ABORt 160
	ALGorithm 161
	ALGorithm[:EXPLicit]:ARRay 162
	ALGorithm[:EXPLicit]:ARRay? 163
	ALGorithm[:EXPLicit]:DEFine 163
	ALGorithm[:EXPLicit]:SCALar 167
	ALGorithm[:EXPLicit]:SCALar? 168
	ALGorithm[:EXPLicit]:SCAN:RATio 168
	ALGorithm[:EXPLicit]:SCAN:RATio? 169
	ALGorithm[:EXPLicit]:SIZe? 169
	ALGorithm[:EXPLicit][:STATe] 170
	ALGorithm[:EXPLicit][:STATe]? 171
	ALGorithm[:EXPLicit]:TIMe? 171
	ALGorithm:FUNCtion:DEFine 172
	ALGorithm:OUTPut:DELay 173
	ALGorithm:OUTPut:DELay? 174
	ALGorithm:UPDate[:IMMediate] 174
	ALGorithm:UPDate:CHANnel 175
	ALGorithm:UPDate:WINDow 176
	ALGOrithm:UPDate:WINDow? 177

	ARM 178
	ARM[:IMMediate] 179
	ARM:SOURce 179
	ARM:SOURce? 180

	CALibration 181
	CALibration:CONFigure:RESistance 182
	CALibration:CONFigure:VOLTage 183
	CALibration:SETup 184
	CALibration:SETup? 184
	CALibration:STORe 185
	CALibration:TARE 186
	CALibration:TARE:RESet 187
	CALibration:TARE? 188
	CALibration:VALue:RESistance 188
	CALibration:VALue:VOLTage 189
	CALibration:ZERO? 190

	DIAGnostic 191
	DIAGnostic:CALibration:SETup[:MODE] 191
	DIAGnostic:CALibration:SETup[:MODE]? 192
	DIAGnostic:CALibration:TARE[:OTDetect]:MODE 192
	DIAGnostic:CALibration:TARE[:OTDetect]:MODE? 193
	DIAGnostic:CHECksum? 193
	DIAGnostic:CUSTom:LINear 193
	DIAGnostic:CUSTom:PIECewise 194
	DIAGnostic:CUSTom:REFerence:TEMPerature 195
	DIAGnostic:IEEE 195
	DIAGnostic:IEEE? 196
	DIAGnostic:INTerrupt[:LINe] 196
	DIAGnostic:INTerrupt[:LINe]? 196

	FORMat 199
	FORMat[:DATA] 199
	FORMat[:DATA]? 201

	INITiate 202
	INITiate[:IMMediate] 202

	INPut 203
	INPut:FILTer[:LPASs]:FREQuency 203
	INPut:FILTer[:LPASs]:FREQuency? 204
	INPut:FILTer[:LPASs][:STATe] 204
	INPut:FILTer[:LPASs][:STATe]? 205
	INPut:GAIN 205
	INPut:GAIN? 206
	INPut:LOW 206
	INPut:LOW? 207
	INPut:POLarity 207
	INPut:POLarity? 208

	MEMory 209
	MEMory:VME:ADDRess 210
	MEMory:VME:ADDRess? 210
	MEMory:VME:SIZE 210
	MEMory:VME:SIZE? 211
	MEMory:VME:STATe 211
	MEMory:VME:STATe? 212

	OUTPut 213
	OUTPut:CURRent:AMPLitude 213
	OUTPut:CURRent:AMPLitude? 214
	OUTPut:CURRent[:STATe] 215
	OUTPut:CURRent[:STATe]? 215
	OUTPut:POLarity 216
	OUTPut:POLarity? 216
	OUTPut:SHUNt 216
	OUTPut:SHUNt? 217
	OUTPut:TTLTrg:SOURce 217
	OUTPut:TTLTrg:SOURce? 218
	OUTPut:TTLTrg<n>[:STATe] 218
	OUTPut:TTLTrg<n>[:STATe]? 219
	OUTPut:TYPE 219
	OUTPut:TYPE? 220
	OUTPut:VOLTage:AMPLitude 220
	OUTPut:VOLTage:AMPLitude? 221

	ROUTe 222
	ROUTe:SEQuence:DEFine? 222
	ROUTe:SEQuence:POINts? 223

	SAMPle 224
	SAMPle:TIMer 224
	SAMPle:TIMer? 225

	[SENSe] 226
	[SENSe:]CHANnel:SETTling 227
	[SENSe:]CHANnel:SETTling? 227
	[SENSe:]DATA:CVTable? 228
	[SENSe:]DATA:CVTable:RESet 229
	[SENSe:]DATA:FIFO[:ALL]? 229
	[SENSe:]DATA:FIFO:COUNt? 230
	[SENSe:]DATA:FIFO:COUNt:HALF? 231
	[SENSe:]DATA:FIFO:HALF? 231
	[SENSe:]DATA:FIFO:MODE 232
	[SENSe:]DATA:FIFO:MODE? 233
	[SENSe:]DATA:FIFO:PART? 233
	[SENSe:]DATA:FIFO:RESet 234
	[SENSe:]FREQuency:APERture 234
	[SENSe:]FREQuency:APERture? 234
	[SENSe:]FUNCtion:CONDition 235
	[SENSe:]FUNCtion:CUSTom 235
	[SENSe:]FUNCtion:CUSTom:REFerence 236
	[SENSe:]FUNCtion:CUSTom:TCouple 237
	[SENSe:]FUNCtion:FREQuency 238
	[SENSe:]FUNCtion:RESistance 239
	[SENSe:]FUNCtion:STRain: 240
	[SENSe:]FUNCtion:TEMPerature 241
	[SENSe:]FUNCtion:TOTalize 243
	[SENSe:]FUNCtion:VOLTage[:DC] 243
	[SENSe:]REFerence 244
	[SENSe:]REFerence:CHANnels 246
	[SENSe:]REFerence:TEMPerature 246
	[SENSe:]STRain:EXCitation 247
	[SENSe:]STRain:EXCitation? 247
	[SENSe:]STRain:GFACtor 248
	[SENSe:]STRain:GFACtor? 248
	[SENSe:]STRain:POISson 249
	[SENSe:]STRain:POISson? 249
	[SENSe:]STRain:UNSTrained 249
	[SENSe:]STRain:UNSTrained? 250
	[SENSe:]TOTalize:RESet:MODE 250
	[SENSe:]TOTalize:RESet:MODE? 252

	SOURce 253
	SOURce:FM[:STATe] 253
	SOURce:FM:STATe? 254
	SOURce:FUNCtion[:SHAPe]:CONDition 254
	SOURce:FUNCtion[:SHAPe]:PULSe 254
	SOURce:FUNCtion[:SHAPe]:SQUare 255
	SOURce:PULM[:STATe] 255
	SOURce:PULM:STATe? 255
	SOURce:PULSe:PERiod 256
	SOURce:PULSe:PERiod? 256
	SOURce:PULSe:WIDTh 257
	SOURce:PULSe:WIDTh? 257

	STATus 258
	STATus:OPERation:CONDition? 260
	STATus:OPERation:ENABle 261
	STATus:OPERation:ENABle? 261
	STATus:OPERation[:EVENt]? 262
	STATus:OPERation:NTRansition 262
	STATus:OPERation:NTRansition? 263
	STATus:OPERation:PTRansition 263
	STATus:OPERation:PTRansition? 264
	STATus:PRESet 264
	STATus:QUEStionable:CONDition? 265
	STATus:QUEStionable:ENABle 265
	STATus:QUEStionable:ENABle? 266
	STATus:QUEStionable[:EVENt]? 266
	STATus:QUEStionable:NTRansition 267
	STATus:QUEStionable:NTRansition? 267
	STATus:QUEStionable:PTRansition 268
	STATus:QUEStionable:PTRansition? 268

	SYSTem 269
	SYSTem:CTYPe? 269
	SYSTem:ERRor? 269
	SYSTem:VERSion? 270

	TRIGger 271
	TRIGger:COUNt 273
	TRIGger:COUNt? 273
	TRIGger[:IMMediate] 273
	TRIGger:SOURce 274
	TRIGger:SOURce? 275
	TRIGger:TIMer[:PERiod] 275
	TRIGger:TIMer[:PERiod]? 275

	Common Command Reference 276
	*CAL? 276
	*CLS 277
	*DMC <name>,<cmd_data> 277
	*EMC 277
	*EMC? 277
	*ESE <mask> 277
	*ESE? 278
	*ESR? 278
	*GMC? <name> 278
	*IDN? 278
	*LMC? 279
	*OPC 279
	*OPC? 279
	*PMC 279
	*RMC <name> 279
	*RST 280
	*SRE <mask> 281
	*SRE? 281
	*STB? 281
	*TRG 281
	*TST? 281
	*WAI 285

	 Command Quick Reference 286

	APPENDIX A. Specifications 295
	APPENDIX B. Error Messages 325
	APPENDIX C. Glossary 333
	APPENDIX D. PID Algorithm Listings 337
	PIDA 337
	PIDB 339
	PIDC 344

	APPENDIX E. Wiring and Noise Reduction Methods 351
	Separating Digital and Analog SCP Signals 351
	Recommended Wiring and Noise Reduction Techniques 352
	Wiring Checklist 352
	VT1415A Guard Connections 353
	Common Mode Voltage Limits 353
	When to Make Shield Connections 353

	Noise Due to Inadequate Card Grounding 353
	VT1415A Noise Rejection 354
	Normal Mode Noise (Enm) 354
	Common Mode Noise (Ecm) 354
	Keeping Common Mode Noise out of the Amplifier 354
	Reducing Common Mode Rejection Using Tri-Filar Transformers 355

	APPENDIX F. Generating User Defined Functions 357
	Introduction 357
	Haversine Example 358
	Limitations 360
	Program Listings 361

	APPENDIX G. Example Program Listings 377
	simp_pid.cs 377
	file_alg.cs 383
	swap.cs 389
	tri_sine.cs 396

	Index 409

	Index
	!
	(ALG_NUM), determining an algorithms identity, 117
	(First_loop), determining first execution, 115
	(FM), fixed width pulses at variable frequency, 71
	(FM), variable frequency square-wave output, 71
	(Important!), performing channel calibration, 72
	(PWM), variable width pulses at fixed frequency, 70
	*CAL?, how to use, 72
	*RST, default settings, 55
	4-20 mA, adding sense circuits for, 45

	A
	A common error to avoid, 119
	A complete thermocouple measurement command sequence, 66
	A quick-start PID algorithm example, 89
	A very simple first algorithm, 124
	Abbreviated Commands, 154
	ABORt subsystem, 160
	abs(expression), 136
	Access, bitfield, 138
	Accessing I/O channels, 114
	Accessing the VT1415A’s resources, 113
	Accessories
	Rack Mount Terminal Panel, 47

	Accuracy
	10k ohm Thermistor, 322, 323
	2250 ohm Thermistor, 318, 319
	5k ohm Thermistor, 320, 321
	dc volts, 296
	E Type Thermocouple, 298, 299, 300, 301
	E Type Thermocouple (extended), 302, 303
	J Type Thermocouple, 304, 305
	K Type Thermocouple, 306
	R Type Thermocouple, 307, 308
	Reference RTD, 315
	Reference Thermistor, 313, 314
	RTD, 316, 317
	S Type Thermocouple, 309, 310
	Sample timer, 295
	T Type Thermocouple, 311, 312
	Temperature, 297

	Adding settling delay for specific channels, 108
	Adding terminal module components, 45
	Additive-expression:, 140
	Additive-operator:, 140
	ADDRess
	MEM:VME:ADDR, 210

	ADDRess?
	MEM:VME:ADDR?, 210

	Alarm limits, 75
	ALG:DEFINE in the programming sequence, 121
	ALG:DEFINE, defining a PID with, 76
	ALG:DEFINE’s three data formats, 121
	ALGorithm :EXPLicit :STATe , 170, 171
	ALGorithm :EXPLicit :ARRay, 162
	ALGorithm :EXPLicit :ARRay?, 163
	ALGorithm :EXPLicit :DEFine, 163
	ALGorithm :EXPLicit :SCALar, 167
	ALGorithm :EXPLicit :SCALar?, 168
	ALGorithm :EXPLicit :SCAN:RATio, 168
	ALGorithm :EXPLicit :SCAN:RATio?, 169
	ALGorithm :EXPLicit :SIZe?, 169
	ALGorithm :EXPLicit :TIMe?, 171
	Algorithm execution order, 119
	Algorithm Language reference, 133
	Algorithm language statement
	writecvt(), 116
	writefifo(), 117

	Algorithm to algorithm communication, 126
	Algorithm, A very simple first, 124
	Algorithm, data acquisition, 129
	Algorithm, exiting the, 136
	Algorithm, modifying a standard PID, 125
	Algorithm, process monitoring, 129
	Algorithm, running the, 125
	Algorithm, starting the PID, 81
	Algorithm, the pre-defined PIDA, 73
	Algorithm, the pre-defined PIDB, 74
	Algorithm, What is a custom ?, 110
	Algorithm, writing the, 125
	ALGorithm:FUNCtion:DEFine, 172
	ALGorithm:OUTPut:DELay, 173
	ALGorithm:OUTPut:DELay?, 174
	ALGorithm:UPDate :IMMediate , 174
	ALGorithm:UPDate:CHANnel, 175
	ALGorithm:UPDate:WINDow, 176
	ALGorithm:UPDate:WINDow?, 177
	Algorithm-definition:, 142
	Algorithms
	disabling, 87
	enabling, 87

	Algorithms, defining custom, 121
	Algorithms, defining standard PID, 73
	Algorithms, INITiating/Running, 81
	Algorithms, non-control, 129
	ALL?
	DATA:FIFO:ALL?, 229

	AMPLitude
	OUTP:CURRent:AMPLitude, 213
	OUTPut:CURRent:AMPLitude?, 214

	An example using the operation group, 95
	APERture
	SENSe:FREQuency:APERture, 234

	APERture?
	SENSe:FREQuency:APERture?, 234

	Arithmetic operators, 135
	Arm and trigger sources, 78
	ARM subsystem, 178, 179
	ARM:SOURce, 179
	ARM:SOURce?, 180
	ARRay
	ALGorithm :EXPLicit :ARRay, 162

	ARRay?
	ALGorithm :EXPlicit :EXPLicit:ARRay?, 163

	Assigning values, 143
	Assignment operator, 135
	Attaching and removing the terminal module, 43
	Attaching the terminal module, 41
	Attaching the VT1415A terminal module, 43
	Autoranging, more on, 106
	Available Power for SCPs, 295

	B
	Bitfield access, 138
	Bit-number:, 140
	BLOCK), continuously reading the FIFO (FIFO mode, 85
	Byte, enabling events to be reported in the status, 94
	Byte, reading the status, 96

	C
	CAL:CONF:RES, 182
	CAL:CONF:VOLT, 183
	CAL:SETup, 184
	CAL:SETup?, 184
	CAL:STORe, 185
	CAL:TARE, 186
	CAL:TARE and thermocouples, 102
	CAL:TARE, resetting, 103
	CAL:TARE:RESet, 187
	CAL:TARE?, 188
	CAL:VAL:RESistance, 188
	CAL:VAL:VOLTage, 189
	CAL:ZERO?, 190
	CALibration subsystem, 181, 182, 184, 185, 186, 187, 188, 189, 190
	Calibration, channel
	*CAL?, 276

	Calibration, control of, 23
	Calling user defined functions, 118
	Capability, maximum tare, 104
	CAUTIONS
	Loss of process control by algorithm, 160, 170, 271
	Safe handling procedures, 19

	Certification, iii
	Changing an algorithm while it’s running, 122
	Changing gains, 104
	Changing gains or filters, 104
	Changing timer interval while scanning, 274
	CHANnel
	ALGorithm:UPDate:CHANnel, 175

	Channel calibration
	 *CAL?, 276

	Channel identifiers, communication using, 126
	Channels
	defined input, 114
	output, 58, 68, 114
	setting up analog input, 58
	setting up digital input, 68

	CHANnels
	SENSe:REFerence:CHANnels, 246

	Channels, accessing I/O, 114
	Channels, adding settling delay for specific, 108
	Channels, input, 114
	Channels, output, 114
	Channels, special identifiers for, 135
	Characteristics, settling, 106
	Checking for problems, 107
	CHECksum?
	DIAG:CHECK?, 193

	Clearing event registers, 97
	Clearing the enable registers, 97
	Clipping limits, 74
	Coefficients, 87
	Command
	Abbreviated, 154
	Implied, 154
	Linking, 157
	Separator, 154

	Command Quick Reference, 286, 288, 289, 290, 291, 292, 293
	Command Reference, Common
	*CAL?, 276
	*CLS, 277
	*DMC, 277
	*EMC, 277
	*EMC?, 277
	*ESE, 277
	*ESE?, 278
	*ESR?, 278
	*GMC?, 278
	*IDN?, 278
	*LMC?, 279
	*OPC, 279
	*OPC?, 279
	*PMC, 279
	*RMC, 279
	*RST, 280
	*SRE, 281
	*SRE?, 281
	*STB?, 281
	*TRG, 281
	*TST?, 281
	*WAI, 285

	Command Reference, SCPI, 159
	ABORt subsystem, 160
	ALGorithm :EXPLicit :STATe , 170, 171
	ALGorithm :EXPLicit :ARRay, 162
	ALGorithm :EXPLicit :ARRay?, 163
	ALGorithm :EXPLicit :DEFine, 163
	ALGorithm :EXPLicit :SCALar, 167
	ALGorithm :EXPLicit :SCALar?, 168
	ALGorithm :EXPLicit :SCAN:RATio?, 169
	ALGorithm :EXPLicit :SIZe?, 169
	ALGorithm :EXPLicit :TIMe?, 171
	ALGorithm :EXPLicit SCAN:RATio, 168
	ALGorithm:FUNCtion:DEFine, 172
	ALGorithm:OUTPut:DELay, 173
	ALGorithm:OUTPut:DELay?, 174
	ALGorithm:UPDate :IMMediate , 174
	ALGorithm:UPDate:CHANnel, 175
	ALGorithm:UPDate:WINDow, 176
	ALGorithm:UPDate:WINDow?, 177
	ARM subsystem, 178, 179
	ARM:IMMediate, 179
	ARM:SOURce, 179
	ARM:SOURce?, 180
	CALibration subsystem, 181, 182, 184, 185, 186, 187, 188, 189, 190
	CALibration:CONFigure:RESistance, 182
	CALibration:CONFigure:VOLTage, 183
	CALibration:SETup, 184
	CALibration:SETup?, 184
	CALibration:STORe, 185
	CALibration:TARE, 186
	CALibration:TARE:RESet, 187
	CALibration:TARE?, 188
	CALibration:VALue:RESistance, 188
	CALibration:VALue:VOLTage, 189
	CALibration:ZERO?, 190
	DIAGnostic subsystem, 191, 192, 193, 195, 196, 197, 198
	DIAGnostic:CALibration:SETup :MODE , 191
	DIAGnostic:CALibration:SETup :MODE ?, 192
	DIAGnostic:CALibration:TARe:MODE, 192
	DIAGnostic:CALibration:TARe:MODE?, 193
	DIAGnostic:CHECksum?, 193
	DIAGnostic:CUSTom:LINear, 193
	DIAGnostic:CUSTom:PIECewise, 194
	DIAGnostic:CUSTom:REFerence:TEMPerature, 195
	DIAGnostic:IEEE, 195
	DIAGnostic:IEEE?, 196
	DIAGnostic:INTerrupt:LINe, 196
	DIAGnostic:INTerrupt:LINe?, 196
	FORMat subsystem, 199, 200, 201
	FORMat:DATA, 199
	FORMat:DATA?, 201
	INITiate subsystem, 202
	INITiate:IMMediate, 202
	INPut subsystem, 203, 205, 207, 208
	INPut:FILTer:LPASs:FREQuency?, 204
	INPut:FILTer:LPASs:STATe, 204
	INPut:FILTer:LPASs:STATe?, 205
	INPut:GAIN, 205
	INPut:GAIN?, 206
	INPut:LOW, 206
	INPut:LOW?, 207
	INPut:LPASs:FILTer:FREQuency, 203
	INPut:POLarity, 207
	INPut:POLarity?, 208
	MEMory subsystem, 209, 211, 212
	MEMory:VME:ADDRess, 210
	MEMory:VME:ADDRess?, 210
	MEMory:VME:SIZE, 210
	MEMory:VME:SIZE?, 211
	MEMory:VME:STATe, 211
	MEMory:VME:STATe?, 212
	OUTPut subsystem, 213, 214, 215, 217, 218, 219, 221
	OUTPut:CURRent:AMPLitude, 213
	OUTPut:CURRent:AMPLitude?, 214
	OUTPut:CURRent:STATe, 215
	OUTPut:CURRent:STATe?, 215
	OUTPut:POLarity, 216
	OUTPut:POLarity?, 216
	OUTPut:SHUNt, 216
	OUTPut:SHUNt?, 217
	OUTPut:TTLTrg:SOURce, 217
	OUTPut:TTLTrg:SOURce?, 218
	OUTPut:TTLTrg<n>:STATe, 218
	OUTPut:TTLTrg<n>:STATe?, 219
	OUTPut:TYPE, 219
	OUTPut:TYPE?, 220
	OUTPut:VOLTage:AMPLitude, 220
	OUTPut:VOLTage:AMPLitude?, 221
	ROUTe subsystem, 222, 223
	ROUTe:SEQuence:DEFine?, 222
	ROUTe:SEQuence:POINts?, 223
	SAMPle subsystem, 224, 225
	SAMPle:TIMer, 224
	SAMPle:TIMer?, 225
	SENSe subsystem, 226, 227, 228, 230, 232, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252
	SENSe:CHANnel:SETTling, 227
	SENSe:CHANnel:SETTling?, 227
	SENSe:DATA:COUN:HALF?, 231
	SENSe:DATA:CVTable:RESet, 229
	SENSe:DATA:CVTable?, 228
	SENSe:DATA:FIFO:ALL?, 229
	SENSe:DATA:FIFO:COUNt?, 230
	SENSe:DATA:FIFO:HALF?, 231
	SENSe:DATA:FIFO:MODE, 232
	SENSe:DATA:FIFO:MODE?, 233
	SENSe:DATA:FIFO:PART?, 233
	SENSe:DATA:FIFO:RESet, 234
	SENSe:FREQuency:APERture, 234
	SENSe:FREQuency:APERture?, 234
	SENSe:FUNC:CONDition, 235
	SENSe:FUNCtion:CUSTom, 235
	SENSe:FUNCtion:CUSTom:REFerence, 236
	SENSe:FUNCtion:CUSTom:TCouple, 237
	SENSe:FUNCtion:FREQuency, 238
	SENSe:FUNCtion:RESistance, 239
	SENSe:FUNCtion:STRain:FBEN, 240
	SENSe:FUNCtion:STRain:FBP, 240
	SENSe:FUNCtion:STRain:FPO, 240
	SENSe:FUNCtion:STRain:HBEN, 240
	SENSe:FUNCtion:STRain:QUAR, 240
	SENSe:FUNCtion:STRainHPO:, 240
	SENSe:FUNCtion:TEMPerature, 241
	SENSe:FUNCtion:TOTalize, 243
	SENSe:FUNCtion:VOLTage, 243
	SENSe:REFerence, 244
	SENSe:REFerence:CHANnels, 246
	SENSe:REFerence:TEMPerature, 246
	SENSe:STRain:EXCitation, 247
	SENSe:STRain:EXCitation?, 247
	SENSe:STRain:GFACtor, 248
	SENSe:STRain:GFACtor?, 248
	SENSe:STRain:POISson, 249
	SENSe:STRain:POISson?, 249
	SENSe:STRain:UNSTrained, 249
	SENSe:STRain:UNSTrained?, 250
	SENSe:TOTalize:RESet:MODE, 250
	SENSe:TOTalize:RESet:MODE?, 252
	SOURce subsystem, 253, 254, 255, 256, 257
	SOURce:FM:STATe, 253
	SOURce:FM:STATe?, 254
	SOURce:FUNC :SHAPe , 255
	SOURce:FUNC :SHAPe :CONDition, 254
	SOURce:FUNC :SHAPe :PULSe, 254
	SOURce:PULM:STATe, 255
	SOURce:PULM:STATe?, 255
	SOURce:PULSe:PERiod, 256
	SOURce:PULSe:PERiod?, 256
	SOURce:PULSe:WIDTh, 257
	SOURce:PULSe:WIDTh?, 257
	STATus subsystem, 258, 259, 260, 262, 263, 264, 265, 266, 268
	STATus:OPERation:CONDition?, 260
	STATus:OPERation:ENABle, 261
	STATus:OPERation:ENABle?, 261
	STATus:OPERation:EVENt?, 262
	STATus:OPERation:NTRansition, 262
	STATus:OPERation:NTRansition?, 263
	STATus:OPERation:PTRansition, 263
	STATus:OPERation:PTRansition?, 264
	STATus:PRESet, 264
	STATus:QUEStionable:CONDition?, 265
	STATus:QUEStionable:ENABle, 265
	STATus:QUEStionable:ENABle?, 266
	STATus:QUEStionable:EVENt?, 266
	STATus:QUEStionable:NTRansition, 267
	STATus:QUEStionable:NTRansition?, 267
	STATus:QUEStionable:PTRansition, 268
	STATus:QUEStionable:PTRansition?, 268
	SYSTem subsystem, 269, 270
	SYSTem:CTYPe?, 269
	SYSTem:ERRor?, 269
	SYSTem:VERSion?, 270
	TRIGger subsystem, 271, 272, 273, 274, 275
	TRIGger:COUNt, 273
	TRIGger:COUNt?, 273
	TRIGger:IMMediate, 273
	TRIGger:SOURce, 274
	TRIGger:SOURce?, 275
	TRIGger:TIMer, 275
	TRIGger:TIMer?, 275

	Command sequences, defined, 25
	Commands, FIFO status, 85
	Commands, FIFO transfer, 84
	Comment lines, 146
	Comments:, 143
	Common Command Format, 153
	Common mode noise, 354
	Common mode rejection, 296
	Common mode voltage
	Maximum, 296

	Common mode voltage limits, 353
	Communication using channel identifiers, 126
	Communication using global variables, 127
	Communication, algorithm to algorithm, 126
	Comparison operators, 135
	Compensating for system offsets, 102
	Compensation, thermocouple reference temperature, 64
	Components, adding terminal module, 45
	Compound-statement:, 142
	CONDition
	SENSe:FUNC:CONDition, 235
	SOURce:FUNC :SHAPe , 254
	STAT:OPER:CONDition?, 260

	CONDition?
	STAT:QUES:CONDition?, 265

	Conditional constructs, 136
	Conditional execution, 144
	Configuring programmable analog SCP parameters, 58
	Configuring the enable registers, 95
	Configuring the transition filters, 94
	Configuring the VT1415A, 17
	Connecting the on-board thermistor, 40
	Connection
	recommended, 37
	signals to channels, 37

	Connections
	Guard, 353

	Considerations, special, 104
	Constant:, decimal, 139
	Constant:, hexadecimal, 139
	Constant:, octal, 139
	Constructs, conditional, 136
	Continuous Mode, 274
	Continuously reading the FIFO (FIFO mode BLOCK), 85
	Control, implementing feed forward, 127
	Control, implementing multivariable, 126
	Control, manual, 75
	Control, PIDA with digital on-off, 125
	Control, program flow, 136
	Controller, describing the VT1415A closed loop, 110
	Controller, overview of the VT1415A algorithmic loop, 52
	Conversion, EU, 334
	Conversion, linking channels to EU, 60
	Conversions, custom EU, 67
	Conversions, custom reference temperature EU, 100
	Conversions, custom thermocouple EU, 100
	Conversions, loading tables for linear, 101
	Conversions, loading tables for non linear, 101
	COUNt?
	SENS:DATA:FIFO:COUNt?, 230

	Counter, setting the trigger, 81
	Creating and loading custom EU conversion tables, 99
	Creating conversion tables, 101
	CTYPe?
	SYST:CTYPe?, 269

	Current Value Table
	SENSe:DATA:CVTable?, 228

	CUSTom
	SENS:FUNC:CUSTom, 235

	Custom Algorithm, what is a ?, 110
	Custom EU conversion tables
	creating, 99
	loading, 99

	Custom EU conversions, 67
	Custom EU operation, 100
	Custom EU tables, 100
	Custom reference temperature EU conversions, 100
	Custom thermocouple EU conversions, 100
	CVT
	Resetting the CVT, 84
	SENSe:DATA:CVTable?, 228

	CVT elements, reading, 116
	CVT elements, writing value to, 116
	CVT, organization of the, 83
	CVT, reading algorithm values from the, 83
	CVT, sending data to, 116

	D
	DATA
	FORMat:DATA, 199
	FORMat:DATA?, 201

	Data acquisition algorithm, 129
	Data structures, 137
	Data types, 136
	DATA:FIFO:ALL?, 229
	Decimal constant:, 139
	Declaration initialization, 139
	Declaration:, 141
	Declarations:, 142
	Declarator:, 141
	Declaring variables, 143
	Default settings, power-on, 55
	DEFine
	ALGorithm :EXPLicit :DEFine, 163
	ALGorithm:FUNCtion:DEFine, 172
	ROUT:SEQ:DEF?, 222

	Defined input and output channels, 114
	Defining a PID with ALG:DEFINE, 76
	Defining an algorithm for swapping, 122
	Defining and accessing global variables, 115
	Defining custom algorithms, 121
	Defining data storage, 77
	Defining standard PID algorithms, 73
	Definite length block data example, 122
	DELay
	ALGorithm:OUTPut:DELay, 173

	DELay?
	ALGorithm:OUTPut, 174

	Describing the VT1415A closed loop controller, 110
	Detecting open transducers, 104
	Determining an algorithm’s size, 123
	Determining an algorithms identity (ALG_NUM), 117
	Determining first execution (First_loop), 115
	Determining model
	SCPI programming, 278

	DIAG:CHECK?, 193
	DIAG:CUST:REF:TEMP, 195
	DIAG:INT:LINe, 196
	DIAG:INT:LINe?, 196
	DIAGnostic
	DIAGnostic:CALibration:SETup :MODE , 191
	DIAGnostic:CALibration:SETup :MODe ?, 192
	DIAGnostic:CALibration:TARe:MODE, 192
	DIAGnostic:CALibration:TARe:MODE?, 193
	DIAGnostic:CUSTom:LINear, 193
	DIAGnostic:CUSTom:PIECewise, 194
	DIAGnostic:IEEE, 195
	DIAGnostic:IEEE?, 196

	DIAGnostic:CALibration:SETup :MODE ?, 192
	DIAGnostic:CALibration:SETup: MODE , 191
	DIAGnostic:CALibration:TARe:MODE, 192
	DIAGnostic:CALibration:TARe:MODE?, 193
	DIAGnostic:CUSTom:LINear, 193
	DIAGnostic:CUSTom:PIECewise, 194
	DIAGnostic:IEEE, 195
	DIAGnostic:IEEE?, 196
	DIAGnostic:OTDetect, 105
	Directly, reading status groups, 97
	Disabling flash memory access (optional), 23
	Disabling the input protect feature (optional), 23
	Does, what *CAL?, 72
	Drivers, 25
	DSP, 334

	E
	ENABle
	STAT:OPER:ENABle, 261
	STAT:QUES:ENABle, 265

	ENABle?
	STAT:OPER:ENABle?, 261
	STAT:QUES:ENABle?, 266

	Enabling and disabling algorithms, 87
	Enabling events to be reported in the status byte, 94
	Environment, the algorithm execution, 111
	Equality-expression:, 141
	Equality-operator:, 141
	Error Messages, 325, 326, 327, 328, 329, 330, 331, 332
	Self Test, 327

	ERRor?
	SYST:ERRor?, 269

	EU, 334
	EU Conversion, 334
	EVENt?
	STAT:OPER:EVENt?, 262
	STAT:QUES:EVENt?, 266

	Example command sequence, 88
	Example language usage, 111
	Example programs, about, 25
	Example, A quick-start PID algorithm, 89
	Example, definite length block data, 122
	Example, indefinite length block data, 122
	Examples, operation status group, 95
	Examples, questionable data group, 95
	Examples, standard event group, 96
	EXCitation
	SENSe:STRain:EXCitation, 247
	SENSe:STRain:EXCitation?, 247

	Executing the programming model, 55
	Execution, conditional, 144
	Exiting the algorithm, 136
	Expression:, 141
	Expression-statement:, 142

	F
	Faceplate connector pin-signal lists, 49
	FIFO status commands, 85
	FIFO transfer commands, 84
	FIFO, reading history mode values from the, 84
	FIFO, reading values from the, 84, 117
	FIFO, sending data to, 116
	FIFO, time relationship of readings in, 117
	FIFO, writing values to, 117
	Filters, 104
	Filters, adding circuits to terminal module, 45
	Filters, configuring the transition, 94
	Fixed width pulses at variable frequency (FM), 71
	Fixing the problem, 107
	Flash Memory, 334
	Flash memory access, disabling, 23
	Flash memory limited lifetime, 185
	FM:STATe
	SOURce:FM:STATe, 253

	FM:STATe?
	SOURce:FM:STATe?, 254

	Format
	Common Command, 153
	SCPI Command, 154

	Format, specifying the data, 77
	FORMat:DATA, 199
	FORMat:DATA?, 201
	Formats, ALG:DEFINE’s three data, 121
	FREQuency
	INPut:FILT:FREQ, 203
	SENSe:FUNCtion:FREQuency, 238

	Frequency function, 68
	Frequency, setting algorithm execution, 88
	Frequency, setting filter cutoff, 58
	FREQuency?
	INP:FILT:FREQ?, 204

	Function, frequency, 68
	Function, setting input, 68
	Function, static state (CONDition), 68, 70
	Function, the main, 112
	Function, totalizer, 69
	Functions and statements, intrinsic
	abs(expression), 135
	interrupt(), 117, 135
	max(expression1,expression2), 135
	min(expression1,expression2), 135
	writeboth(expression,cvt_element), 135
	writecvt(expression,cvt_element), 116, 135
	writefifo(expression), 117, 135

	Functions, calling user defined, 118
	Functions, linking output channels to, 67
	Functions, setting output, 70
	Functions:, 136

	G
	Gain
	channel, 276

	GAIN
	INPut:GAIN, 205

	GAIN?
	INP:GAIN?, 206

	Gains, setting SCP, 58
	GFACtor
	SENSe:STRain:GFACtor, 248
	SENSe:STRain:GFACtor?, 248

	Global variables, 139
	accessing, 115
	defining, 115

	Glossary, 333, 334, 335, 336
	Grounding
	Noise due to inadequate, 353

	Group, an example using the operation, 95
	Guard connections, 353

	H
	HALF?
	SENS:DATA:FIFO:COUNt:HALF?, 231
	SENS:DATA:FIFO:HALF?, 231

	Hexadecimal constant:, 139
	HINTS
	for quiet measurements, 37
	Read chapter 3 before chapter 4, 109

	History mode, 75
	How to use *CAL?, 72

	I
	Identifier:, 139
	Identifiers, 134
	IEEE +/- INF, 200
	IMMediate
	ALGorithm:UPDate, 174
	ARM:IMMediate, 179
	INIT:IMM, 202
	TRIG:IMMediate, 273

	Impedance, input, 296
	Implementing feed forward control, 127
	Implementing multivariable control, 126
	Implementing setpoint profiles, 130
	Implied Commands, 154
	IMPORTANT!
	Do use CAL:TARE for copper TC wiring, 102
	Don’t use CAL:TARE for thermocouple wiring, 102
	Making low-noise measurements, 32
	Resolving programming problems, 55

	Indefinite length block data example, 122
	INF, IEEE, 200
	INIT:IMM, 202
	Init-declarator:, 141
	Init-declarator-list:, 141
	Initialization, declaration, 139
	Initializing variables, 116
	INITiate subsystem, 202
	INITiating/Running algorithms, 81
	INP:FILT:FREQ?, 204
	INP:FILT:LPAS:STAT, 204
	INP:FILT:LPAS:STAT?, 205
	INP:GAIN?, 206
	Input channels, 114
	Input impedance, 296
	Input protect feature, disabling, 23
	INPut subsystem, 203, 205, 207, 208
	Input voltage, maximum, 296
	INPut:FILT:FREQ, 203
	INPut:GAIN, 205
	INPut:LOW, 206
	INPut:LOW?, 207
	INPut:POLarity, 207
	INPut:POLarity?, 208
	Inputs, setting up digital, 68
	Instrument drivers, 25
	Interrupt function, 117
	Interrupt level, setting NOTE, 17
	interrupt(), 117, 136
	Interrupts
	updating the status system, 98
	VXI, 98

	Intrinsic functions and statements
	abs(expression), 135
	interrupt(), 135
	max(expression1,expression2), 135
	min(expression1,expression2), 135
	writeboth(expression,cvt_element), 135
	writecvt(expression,cvt_element), 116, 135
	writefifo(expression), 117, 135

	Intrinsic Functions and Statements
	interrupt(), 117

	Intrinsic-statement:, 142
	Isothermal reference measurement, NOTE, 32

	K
	Keywords, special VT1415A reserved, 134
	Keywords, standard reserved, 134

	L
	Language syntax summary, 139
	Language, overview of the algorithm, 110
	Layout
	Terminal Module, 33

	Lifetime limitation, Flash memory, 185
	Limits
	Common mode voltage, 353

	Limits, alarm, 75
	Limits, clipping, 74
	LINe
	DIAG:INT:LINe, 196

	LINe?
	DIAG:INT:LINe?, 196

	Lines, comment, 146
	Linking channels to EU conversion, 60
	Linking Commands, 157
	Linking output channels to functions, 67
	Linking resistance measurements, 61
	Linking strain measurements, 66
	Linking temperature measurements, 63
	Linking voltage measurements, 61
	Lists
	Faceplate connector pin-signal , 49

	Loading custom EU tables, 101
	Loading tables for linear conversions, 101
	Loading tables for non linear conversions, 101
	Logical operators, 135
	Logical-AND-expression:, 141
	LOW
	INPut:LOW, 206
	INPut:LOW?, 207

	Low-noise measurements, HINTS, 37
	Low-noise measurements, IMPORTANT!, 32

	M
	Manual control, 75
	max(expression1,expression2), 136
	Maximum
	Common mode voltage, 296
	Input voltage, 296
	Tare cal offset, 296
	Update rate, 295

	Maximum tare capability, 104
	Measurement
	accuracy dc volts, 296
	Ranges, 295
	Resolution, 295

	Measurements
	terminal block considerations for TC, 36

	Measurements, linking resistance, 61
	Measurements, linking strain, 66
	Measurements, linking temperature, 63
	Measurements, linking voltage, 61
	Measurements, reference measurement before thermocouple, 65
	Measurements, thermocouple, 64
	Measuring the reference temperature, 65
	MEM:VME:ADDR, 210
	MEM:VME:ADDR?, 210
	MEM:VME:SIZE, 210
	MEM:VME:SIZE?, 211
	MEM:VME:STATe, 211
	MEM:VME:STATe?, 212
	Messages, error, 325, 326, 327, 328, 329, 330, 331, 332
	min(expression1,expression2), 136
	MODE
	SENS:DATA:FIFO:MODE, 232
	SENSe:TOTalize:RESet:MODE, 250

	Mode, history, 75
	Mode, selecting the FIFO, 78
	MODE?
	SENS:DATA:FIFO:MODE?, 233
	SENSe:TOTalize:RESet:MODE?, 252

	Mode?, which FIFO, 85
	Model, determining
	SCPI programming, 278

	Model, executing the programming, 55
	Model, programming, 53
	Modifier, the static, 137
	Modifying a standard PID algorithm, 125
	Modifying running algorithm variables, 87
	Modifying the standard PIDA, 126
	Modifying the terminal module circuit, 45
	Module
	SCPs and Terminal, 33

	Modules
	Terminal, 33

	More on auto ranging, 106
	Multiplicative-expression:, 140
	Multiplicative-operator:, 140

	N
	NaN, 200
	Next, where to go, 147
	Noise
	Common mode, 354
	Normal mode, 354

	Noise due to inadequate grounding, 353
	Noise reduction with amplifier SCPs, NOTE, 108
	Noise reduction, wiring techniques, 352
	Noise Rejection, 354
	Noisy measurements
	Quieting, 32, 37

	Non-Control algorithms, 129
	Normal mode noise, 354
	Not-a-Number, 200
	NOTES
	*RST effect on custom EU tables, 100
	*TST? sets default ASC,7 data format, 200
	+ & - overvoltage return format from FIFO, 230, 231, 233
	ALG:SCAN:RATIO vs. ALG:UPD, 168
	ALG:SIZE? return for undefined algorithm, 169
	ALG:STATE effective after ALG:UPDATE, 87
	ALG:STATE effective only after ALG:UPD, 170
	ALG:TIME? return for undefined algorithm, 171
	Algorithm Language case sensitivity, 134
	Algorithm Language reserved keywords, 134
	Algorithm source string terminated with null, 122
	Algorithm source string terminates with null, 165
	Algorithm swapping limitations, 166
	Algorithm Swapping restrictions, 124
	Algorithm variable declaration and assignment, 115
	Amplifier SCPs can reduce measurement noise, 108
	BASIC’s vs. ‘C’s “is equal to” symbol, 143
	Bitfield access ‘C’ vs. Algorithm Language, 138
	Cannot declare channel ID as variable, 135
	Combining SCPI commands, 158
	CVT contents after *RST, 84, 229
	Decimal constants can be floating or integer, 139
	Default (*RST) Engineering Conversion, 60
	Define user function before algorithm calls , 118
	Do not CAL:TARE thermocouple wiring, 186
	Do use CAL:TARE for copper in TC wiring, 102
	Do use CAL:TARE for copper TC wiring, 186
	Don’t use CAL:TARE for thermocouple wiring, 102
	Flash memory limited lifetime, 103, 185
	Isothermal reference measurements, 32
	MEM subsystem vs. command module model, 209
	MEM subsystem vs. TRIG and INIT sequence, 209
	MEM system vs TRIG and INIT sequence, 198
	Memory required by an algorithm, 123
	Number of updates vs. ALG:UPD:WINDOW, 162, 167, 177
	Open transducer detect restrictions, 105
	OUTP:CURR:AMPL command, 60
	OUTP:CURR:AMPL for resistance measurements, 213
	OUTP:VOLT:AMPL command, 60
	PID definition errors and channel specifiers, 76
	Reference to noise reduction literature, 353
	Resistance temperature measurements, 63
	Saving time when doing channel calibration, 73
	Selecting manual range vs. SCP gains, 61
	Setting the interrupt level, 17
	Settings conflict, ARM:SOUR vs TRIG:SOUR, 178, 274
	Thermocouple reference temperature usage, 244, 246
	TRIGger:SOURce vs. ARM:SOURce, 79, 80
	Warmup before executing *TST?, 328
	When algorithm variables are initialized, 139

	NTRansition
	STAT:OPER:NTRansition, 262
	STAT:QUES:NTRansition, 267

	NTRansition?
	STAT:OPER:NTRansition?, 263
	STAT:QUES:NTRansition?, 267

	O
	Octal constant:, 139
	Offset
	A/D, 184, 276
	channel, 184, 276

	Offsets, compensating for system, 102
	Offsets, residual sensor, 103
	Offsets, system wiring, 102
	Operating sequence, 118
	Operation, 72, 103
	Operation and restrictions, 72
	Operation status group examples, 95
	Operation, custom EU, 100
	Operation, standard EU, 99
	Operation, VT1415A background, 98
	Operational overview, 52
	Operator, assignment, 135
	Operator, unary arithmetic, 144
	Operator, unary logical, 135
	Operators, 135
	Operators, arithmetic, 135
	Operators, comparison, 135
	Operators, logical, 135
	Operators, the arithmetic, 144
	Operators, the comparison, 144
	Operators, the logical, 144
	Operators, unary, 135
	Option A3F, 47
	Options
	Terminal module, 47

	Order, algorithm execution, 119
	Organization of the CVT, 83
	OTD restrictions, NOTE, 105
	OTDetect, DIAGnostic:OTDetect, 105
	OUTP:CURRent:AMPLitude, 213
	OUTP:CURRent:AMPLitude?, 214
	OUTP:SHUNt, 216
	OUTP:SHUNt?, 217
	OUTP:TTLT<n>:STATe, 218
	OUTP:TTLT<n>:STATe?, 219
	Output channels, 114
	OUTPut subsystem, 213, 214, 215, 217, 218, 219, 221
	OUTPut:CURRent:STATe, 215
	OUTPut:CURRent:STATe?, 215
	OUTPut:POLarity, 216
	OUTPut:POLarity?, 216
	OUTPut:TTLTrg:SOURce, 217
	OUTPut:TTLTrg:SOURce?, 218
	OUTPut:TYPE, 219
	OUTPut:TYPE?, 220
	OUTPut:VOLTage:AMPLitude, 220
	OUTPut:VOLTage:AMPLitude?, 221
	Outputs, setting up digital, 69
	Outputting trigger signals, 81
	OVER), reading the latest FIFO values (FIFO mode, 86
	Overall program structure, 146
	Overloads, unexpected channel, 104
	Overview of the algorithm language, 110
	Overview of the VT1415A algorithmic loop controller, 52
	Overview, operational, 52

	P
	Parameter data and returned value types, 158
	Parameters, configuring programmable analog SCP, 58
	PART?
	SENS:DATA:FIFO:PART?, 233

	Performing channel calibration (Important!), 72
	PERiod
	SOURce:PULSe:PERiod, 256

	PERiod?
	SOURce:PULSe:PERiod?, 256

	PID algorithm tuning, 91
	PIDA with digital on-off control, 125
	PIDA, modifying the standard, 126
	Planning
	grouping channels to signal conditioning, 29
	planning wiring layout, 29
	sense vs. output SCPs, 31
	thermocouple wiring, 32

	Points
	ROUT:SEQ:POINts?, 223

	POISson
	SENSe:STRain:POISson, 249
	SENSe:STRain:POISson?, 249

	POLarity
	INPut:POLarity, 207
	OUTPut:POLarity, 216

	Polarity, setting input, 68
	Polarity, setting output, 69
	POLarity?
	INPut:POLarity?, 208
	OUTPut:POLarity?, 216

	Power Available for SCPs, 295
	Power-on and *RST default settings, 55
	PRESet
	STAT:PRESet, 264

	Pre-setting PID variables , 77
	Pre-setting PID variables and coefficients, 77
	Primary-expression:, 140
	Problem, fixing the, 107
	Problems, checking for, 107
	Problems, resolving programming, 55
	Process monitoring algorithm, 129
	Profiles, implementing setpoint, 130
	Program flow control, 136
	Program structure and syntax, 143
	Programming model, 53
	Programming the trigger timer, 80
	PTRansition
	STAT:OPER:PTRansition, 263
	STAT:QUES:PTRansition, 268

	PTRansition?
	STAT:OPER:PTRansition?, 264
	STAT:QUES:PTRansition?, 268

	PULSe
	SOURce:FUNC :SHAPe , 254

	Q
	Questionable data group examples, 95
	Quick Reference, Command, 286, 288, 289, 290, 291, 292, 293
	Quiet measurements, HINTS, 37
	Quieter readings with amplifier SCPs, NOTE, 108

	R
	Rack Mount Terminal Panel Accessories, 47
	Ranges, measurement, 295
	RATio
	ALGorithm :EXPLicit :SCAN:RATio, 168

	RATio?
	ALGorithm :EXPLicit :SCAN:RATio?, 169

	Reading algorithm values from the CVT, 83
	Reading algorithm variables, 83
	Reading condition registers, 97
	Reading CVT elements, 116
	Reading event registers, 97
	Reading history mode values from the FIFO, 84
	Reading running algorithm values, 83
	Reading status groups directly, 97
	Reading the latest FIFO values (FIFO mode OVER), 86
	Reading the status byte, 96
	Reading values from the FIFO, 84, 117
	Recommended measurement connections, 37
	Re-Execute *CAL? when:, 73
	REFerence
	SENS:FUNC:CUST:REF, 236
	SENS:REFerence, 244

	Reference junction, 40
	Reference measurement before thermocouple measurements, 65
	Reference temperature measurement, NOTE, 32
	Reference temperature sensing, 35
	Reference temperature sensing with the VT1415A, 35
	Reference, Algorithm language, 133
	Register, the status byte group’s enable, 97
	Registers, clearing event, 97
	Registers, clearing the enable, 97
	Registers, configuring the enable, 95
	Registers, reading condition, 97
	Registers, reading event, 97
	Rejection
	Noise, 354

	Rejection, common mode, 296
	Relational-expression:, 140
	Relational-operator:, 141
	Removing the VT1415A terminal module, 43
	Reset
	*RST, 280
	Resetting the CVT, 84

	RESet
	SENS:DATA:CVT:RESet, 229
	SENS:DATA:FIFO:RESet, 234

	Resetting CAL:TARE, 103
	Residual sensor offsets, 103
	Resistance
	CAL:VAL:RESistance, 188

	RESistance
	CAL:CONF:RES, 182
	SENS:FUNC:RESistance, 239

	Resolution, measurement, 295
	Resources, accessing the VT1415A’s, 113
	Restrictions, 72
	ROUT:SEQ:DEF?, 222
	ROUT:SEQ:POINts?, 223
	ROUTe subsystem, 222, 223
	RTD and thermistor measurements, 63
	Running the algorithm, 125
	Running, changing an algorithm while it’s, 122

	S
	Safe Handling, static discharge CAUTION, 19
	SAMP:TIMer, 224
	SAMP:TIMer?, 225
	SAMPle subsystem, 224, 225
	sample timer, accuracy, 295
	SCALar
	ALGorithm :EXPLicit :SCALar, 167

	SCALar?
	ALGorithm :EXPLicit :SCALar?, 168

	SCP, 334
	grouping channels to signal conditioning, 29
	sense vs. output SCPs, 31

	SCP, Power Available, 295
	SCP, setting the HP E1505 current source, 59
	SCPI commands
	DIAGnostic:OTDetect, 105

	SCPI Commands, 149
	Format, 154

	SCPs and Terminal Module, 33
	Selecting the FIFO mode, 78
	Selecting the trigger source, 79
	Selecting trigger timer arm source, 80
	Selection-statement:, 142
	Self test
	and C-SCPI for MS-DOS (R), 282
	how to read results, 282

	Self Test, error messages, 327
	Sending Data to the CVT and FIFO, 116
	SENS:DATA:CVT:RESet, 229
	SENS:DATA:FIFO:COUNt:HALF?, 231
	SENS:DATA:FIFO:COUNt?, 230
	SENS:DATA:FIFO:HALF?, 231
	SENS:DATA:FIFO:MODE, 232
	SENS:DATA:FIFO:MODE?, 233
	SENS:DATA:FIFO:PART?, 233
	SENS:DATA:FIFO:RESet, 234
	SENS:FUNC:CUST:REF, 236
	SENS:FUNC:CUST:TC, 237
	SENS:FUNC:RESistance, 239
	SENS:FUNC:STRain, 240
	SENS:FUNC:TEMPerature, 241
	SENS:FUNC:VOLTage, 243
	SENS:REF:TEMPerature, 246
	SENS:REFerence, 244
	SENSe subsystem, 226, 227, 228, 230, 232, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252
	SENSe:CHANnel:SETTling, 227
	SENSe:CHANnel:SETTling?, 227
	SENSe:DATA:CVTable?, 228
	SENSe:FREQuency:APERture, 234
	SENSe:FREQuency:APERture?, 234
	SENSe:FUNC:CONDition, 235
	SENSe:FUNC:CUSTom, 235
	SENSe:FUNCtion:FREQuency, 238
	SENSe:FUNCtion:TOTalize, 243
	SENSe:REFerence:CHANnels, 246
	SENSe:STRain:EXCitation, 247
	SENSe:STRain:EXCitation?, 247
	SENSe:STRain:GFACtor, 248
	SENSe:STRain:GFACtor?, 248
	SENSe:STRain:POISson, 249
	SENSe:STRain:POISson?, 249
	SENSe:STRain:UNSTrained, 249
	SENSe:STRain:UNSTrained?, 250
	SENSe:TOTalize:RESet:MODE, 250
	SENSe:TOTalize:RESet:MODE?, 252
	Sensing
	Reference temperature with the VT1415A, 35

	Sensing 4-20 mA, 45
	Separator, command, 154
	Sequence, A complete thermocouple measurement command, 66
	Sequence, ALG:DEFINE in the programming, 121
	Sequence, example command, 88
	Sequence, operating, 118
	Sequence, the operating, 82
	Setting algorithm execution frequency, 88
	Setting filter cutoff frequency, 58
	Setting input function, 68
	Setting input polarity, 68
	Setting output drive type, 69
	Setting output functions, 70
	Setting output polarity, 69
	Setting SCP gains, 58
	Setting the HP E1505 current source SCP, 59
	Setting the logical address switch, 18
	Setting the trigger counter, 81
	Setting the VT1511A strain bridge SCP excitation voltage, 60
	Setting up analog input and output channels, 58
	Setting up digital input and output channels, 68
	Setting up digital inputs, 68
	Setting up digital outputs, 69
	Setting up the trigger system, 78
	Settings conflict
	ARM:SOUR vs TRIG:SOUR, 178, 274

	SETTling
	SENSe:CHANnel:SETTling, 227

	Settling characteristics, 106
	SETTling?
	SENSe:CHANnel:SETTling?, 227

	SETup
	CAL:SETup, 184
	CAL:SETup?, 184

	Shield Connections
	When to make, 353

	Shielded wiring, IMPORTANT!, 32
	SHUNt
	OUTP:SHUNt, 216
	OUTPut:SHUNt?, 217

	Signal, connection to channels, 37
	Signals, outputting trigger, 81
	SIZE
	MEM:VME:SIZE, 210

	Size, determining an algorithm’s, 123
	SIZe?
	ALGorithm :EXPLicit :SIZe?, 169

	SIZE?
	MEM:VME:SIZE?, 211

	SOURce
	ARM:SOURce, 179
	ARM:SOURce?, 180
	OUTPut:TTLTrg:SOURce, 217
	TRIG:SOURce, 274

	SOURce subsystem, 253, 254, 255, 256, 257
	Source, selecting the trigger, 79
	Source, selecting trigger timer arm, 80
	SOURce:FM:STATe, 253
	SOURce:FM:STATe?, 254
	SOURce:FUNC :SHAPe , 255
	SOURce:FUNC :SHAPe :CONDition, 254
	SOURce:FUNC :SHAPe :PULSe, 254
	SOURce:PULM:STATe, 255
	SOURce:PULM:STATe?, 255
	SOURce:PULSe:PERiod, 256
	SOURce:PULSe:PERiod?, 256
	SOURce:PULSe:WIDTh, 257
	SOURce:PULSe:WIDTh?, 257
	SOURce?
	TRIG:SOURce?, 275

	Sources
	arm, 78
	trigger, 78

	Special considerations, 104
	Special identifiers for channels, 135
	Special VT1415A reserved keywords, 134
	Specifications, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324
	Specifying the data format, 77
	SQUare
	SOURce:FUNC :SHAPe , 255

	Standard Commands for Programmable Instruments, SCPI, 159
	Standard EU operation, 99
	Standard event group examples, 96
	Standard reserved keywords, 134
	Starting the PID algorithm, 81
	STAT:OPER:CONDition?, 260
	STAT:OPER:ENABle, 261
	STAT:OPER:ENABle?, 261
	STAT:OPER:EVENt?, 262
	STAT:OPER:NTRansition, 262
	STAT:OPER:NTRansition?, 263
	STAT:OPER:PTRansition, 263
	STAT:OPER:PTRansition?, 264
	STAT:PRESet, 264
	STAT:QUES:CONDition?, 265
	STAT:QUES:ENABle, 265
	STAT:QUES:ENABle?, 266
	STAT:QUES:EVENt?, 266
	STAT:QUES:NTRansition, 267
	STAT:QUES:NTRansition?, 267
	STAT:QUES:PTRansition, 268
	STAT:QUES:PTRansition?, 268
	STATe
	ALGorithm :EXPLicit , 170
	INP:FILT:LPAS:STATe, 204
	INP:FILT:LPAS:STATe?, 205
	MEM:VME:STATe, 211
	MEM:VME:STATe?, 212
	OUTPut:CURRent:STATe, 215
	OUTPut:CURRent:STATe?, 215
	SOURce:PULM:STATe, 255

	STATe?
	ALGorithm :EXPlicit , 171
	SOURce:PULM:STATe?, 255

	Statement, algorithm language
	writecvt(), 116
	writefifo(), 117

	Statement:, 142
	Statement-list:, 142
	Statements and functions, intrinsic
	abs(expression), 135
	interrupt(), 117, 135
	max(expression1,expression2), 135
	min(expression1,expression2), 135
	writeboth(expression,cvt_element), 135
	writecvt(expression,cvt_element), 116, 135
	writefifo(expression), 117, 135

	Statements:, 136
	Static discharge safe handling, CAUTION, 19
	Static state (CONDition) function, 68, 70
	STATus subsystem, 258, 259, 260, 262, 263, 264, 265, 266, 268
	Status variable, 75
	Storage, defining data, 77
	STORe
	CAL:STORe, 185

	STRain
	SENS:FUNC:STRain, 240

	Structure, overall program, 146
	Structures, data, 137
	Sub subsystem, 191, 192, 193, 195, 196, 197, 198, 199, 200, 201, 209, 211, 212
	Subsystem
	ABORT, 160
	ARM, 178, 179
	CALibration, 181, 182, 184, 185, 186, 187, 188, 189, 190
	DIAGnostic, 191, 192, 193, 195, 196, 197, 198
	FORMat, 199, 200, 201
	INITiate, 202
	INPut, 203, 205, 207, 208
	MEMory, 209, 211, 212
	OUTPut, 213, 214, 215, 217, 218, 219, 221
	ROUTe, 222, 223
	SAMPle, 224, 225
	SENSe, 226, 227, 228, 230, 232, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252
	SOURce, 253, 254, 255, 256, 257
	STATus, 258, 259, 260, 262, 263, 264, 265, 266, 268
	SYSTem, 269, 270
	TRIGger, 271, 272, 273, 274, 275

	Summary, 102
	Summary, language syntax, 139
	Supplying the reference temperature, 66
	support, xv
	support resources, xv
	Swapping, defining an algorithm for, 122
	Switch, setting the logical address, 18
	Symbols, the operations, 144
	Syntax, Variable Command, 155
	SYST:CTYPe?, 269
	SYST:ERRor?, 269
	SYST:VERSion?, 270
	SYSTem subsystem, 269, 270
	System wiring offsets, 102
	System, setting up the trigger, 78
	System, using the status, 91

	T
	Tables, creating conversion, 101
	Tables, custom EU, 100
	Tables, loading custom EU, 101
	TARE
	CAL:TARE:RESet, 187
	CAL:TARE?, 188

	Tare cal offset, maximum, 296
	TARE?
	CAL:TARE, 186

	TCouple
	SENS:FUNC:CUST:TC, 237

	technical support, xv
	Techniques
	Wiring and noise reduction, 352

	TEMPerature
	DIAG:CUST:REF:TEMP, 195
	SENS:FUNC:TEMPerature, 241
	SENS:REF:TEMPerature, 246

	Temperature accuracy, 297
	Temperature, measuring the reference, 65
	Temperature, supplying the reference, 66
	Terminal block considerations for TC measurements, 36
	Terminal Blocks, 334
	Terminal Module, 335
	Attaching and removing the VT1415A, 43
	Attaching the VT1415A, 43
	Removing the VT1415A, 43
	Wiring and attaching the, 41

	Terminal Module Layout, 33
	Terminal module options, 47
	Terminal module wiring maps, 46
	Terminal modules, 33
	The algorithm execution environment, 111
	The arithmetic operators, 144
	The comparison operators, 144
	The logical operators, 144
	The main function, 112
	The operating sequence, 82
	The operations symbols, 144
	The pre-defined PIDA algorithm, 73
	The pre-defined PIDB algorithm, 74
	The static modifier, 137
	The status byte group’s enable register, 97
	Thermistor
	Connecting the on-board, 40

	Thermistor and RTD measurements, 63
	Thermocouple measurements, 64
	Thermocouple reference temperature compensation, 64
	Thermocouples and CAL:TARE, 102
	Time relationship of readings in FIFO, 117
	TIMe?
	ALGorithm :EXPLicit , 171

	Timer
	SAMP:TIMer, 224
	SAMP:TIMer?, 225

	TIMer
	TRIG:COUNt, 273
	TRIG:TIMer, 275

	Timer, programming the trigger, 80
	TIMer?
	TRIG:TIMer?, 275

	TOTalize
	SENSe:FUNCtion:TOTalize, 243

	Totalizer function, 69
	Transducers, detecting open, 104
	TRIG:COUNt, 273
	TRIG:COUNt?, 273
	TRIG:IMMediate, 273
	TRIG:SOURce, 274
	TRIG:SOURce?, 275
	TRIG:TIMer, 275
	TRIG:TIMer?, 275
	TRIGger subsystem, 271, 272, 273, 274, 275
	trigger system
	ABORt subsystem, 160
	ARM subsystem, 178, 179
	INITiate subsystem, 202
	TRIGger subsystem, 271, 272, 273, 274, 275

	Trigger, variable width pulse per, 70
	TTLTrg:SOURce
	OUTPut:TTLTrg:SOURce?, 218

	TTLTrg<n>
	OUTP:TTLT<n>:STATe?, 219
	OUTP:TTLTrg<n>:STATe, 218

	Tuning, PID algorithm, 91
	TYPe
	OUTPut:TYPE, 219

	Type, setting output drive, 69
	TYPe?
	OUTPut:TYPE?, 220

	Types, data, 136

	U
	Unary arithmetic operator, 144
	Unary logical operator, 135
	Unary operators, 135
	Unary-expression:, 140
	Unary-operator:, 140
	Unexpected channel offsets or overloads, 104
	UNSTrained
	SENSe:STRain:UNSTrained, 249
	SENSe:STRain:UNSTrained?, 250

	Update rate, maximum, 295
	Updating the algorithm variables, 87
	Updating the algorithm variables and coefficients, 87
	Updating the status system and VXI interrupts, 98
	Usage, example language, 111
	Using the status system, 91

	V
	Value types
	parameter data, 158
	returned, 158

	Values, assigning, 143
	Values, reading running algorithm, 83
	Variable Command Syntax, 155
	Variable frequency square-wave output (FM), 71
	Variable width pulse per trigger, 70
	Variable width pulses at fixed frequency (PWM), 70
	Variable, status, 75
	Variables, communication using global, 127
	Variables, declaring, 143
	Variables, global, 139
	Variables, initializing, 116
	Variables, modifying running algorithm, 87
	Variables, reading algorithm, 83
	Verifying a successful configuration, 25
	VERsion?
	SYST:VERSion?, 270

	Voids Warranty
	Cutting Input Protect Jumper, 23

	Voltage
	CAL:VALue:VOLTage, 189

	VOLTage
	CAL:CONF:VOLT, 183
	SENS:FUNC:VOLTage, 243

	Voltage, setting the VT1511A strain bridge SCP excitation, 60
	VOLTage:AMPLitude
	OUTPut:VOLTage:AMPLitude, 220
	OUTPut:VOLTage:AMPLitude?, 221

	VT1415A background operation, 98
	VT1415A, configuring the, 17

	W
	Warranty, iii
	Voided by cutting Input Protect Jumper, 23

	What *CAL? does, 72
	What is a custom algorithm?, 110
	When to make shield connections, 353
	When:, re-execute *CAL?, 73
	Where to go next, 147
	Which FIFO mode?, 85
	WIDTh
	SOURce:PULSe:WIDTh, 257

	WIDTh?
	SOURce:PULSe:WIDTh?, 257

	WINDow
	ALGorithm:UPDate:WINDow, 176

	WINDow?
	ALGorithm:UPDate:WINDow?, 177

	Wiring
	planning for thermocouple, 32
	planning layout, 29
	signal connection, 37

	Wiring and attaching the terminal module, 41
	Wiring maps
	Terminal Module, 46

	Wiring techniques, for noise reduction, 352
	Wiring the terminal module, 41
	writeboth(expression,cvt_element), 136
	writecvt(expression,cvt_element), 116, 136
	writefifo(expression), 117, 136
	Writing the algorithm, 125
	Writing values to CVT elements, 116
	Writing values to the FIFO, 117

	Z
	ZERO?
	CAL:ZERO?, 190

